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Open-Source Electronic 
Design Automation (EDA) 
Tools

 Open-sOurce eda has become a major 
endeavor in the EDA community as it promises a 
variety of advances, especially with respect to com-
mon infrastructures such as internal representations 
and databases, as well as interoperability of tools. 
Its success is also due to eco-systems such as RISCV, 
Chips Alliance, and Free Silicon Foundation. It 
is, therefore, the right time to be covered by IEEE 
Design&Test through our guest editors Sherief Reda, 
Pierre-Emmanuel Gaillardon, and Leon Stok. The 
special issue is structured into four articles covering 
entire design flows as well as further four articles 
focusing on specific tools. Thanks to the guest edi-
tors for this special issue.

In our General Interest section, we have two 
articles. The article titled “Design of  |  Shape Stub-
Based Negative Group Delay Circuit” by Wan et al. 
presents a type of negative group delay (NGD) cir-
cuit based on transmission line resonators.

The second General Interest article titled “Design 
of Single-Bit Fault-Tolerant Reversible Circuits” by 

Gaur et al. introduces a generalized architecture for 
designing fault-tolerant reversible circuits.

ACM/IEEE MLCAD is a new workshop on 
Machine Learning for CAD. The report covers the 
first edition from 2019 held in Banff and the second 
edition from 2020 held in a virtual form. Thanks to 
the general chairs for the report. 

The ACM/IEEE 39th International Conference on 
Computer-Aided Design (ICCAD 2020) took place 
as a virtual event. Thanks to Yuan Xie, the General 
Chair, for his conference report.

And thanks to Massimo Poncino, our Conference 
Reports editor, for acquiring the reports.

As always, last but not least, thanks to Scott 
Davidson for The Last Byte titled “The Road to Open-
Source EDA.”

Enjoy reading! 

Digital Object Identifier 10.1109/MDAT.2021.3066119

Date of current version: 8 April 2021.

Jörg Henkel
Editor-in-Chief
IEEE Design&Test
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Guest Editors’ 
Introduction: The 
Resurgence of Open-
Source EDA Technology

 In the 1980s, the academic community pro-
duced several very high-quality electronic design 
automation (EDA) tools that spawned the EDA 
industry. Tools such as Spice [1], Espresso [2], 
and SIS [3] became the foundation of EDA com-
panies. Open-source tools enable rapid innova-
tion and create an ecosystem for scientific devel-
opment. In recent years, the cost and difficulty 
involved in the design of integrated circuits (ICs) 
in advanced nodes have stifled hardware design 
innovation and have raised unprecedented barri-
ers to bring new design ideas to the marketplace. 
Unlike the thriving software community, which 
enjoys a large number of open-source operating 
systems, compilers, libraries, and applications, 
the hardware community lacks such a modern 
ecosystem. With the advent of open silicon IP 
ecosystems, such as RISCV, Chips Alliance, and 
Free Silicon Foundation, the time has come to 
reinvigorate the open-source movement in EDA 
tools. Recent programs from governmental agen-
cies aim to jump-start the development of open-
source EDA tools to reduce the cost and turna-
round time of hardware design. 

The availability of open-source EDA tools 
leads to multiple benefits. First, the availabil-
ity of open-source tools leads to reproducible 
research with clear identification of state-of-the-
art results. Thus, open-source tools enable une-
quivocal benchmarking that can quickly identify 
new EDA solutions that advance the state of the 
art. Second, open-source tools enable the accel-
eration of EDA research as innovations can be 
implemented at a faster rate by building on top 
of existing open-source tools and components. 
Thus, open-source tools lower the barrier to 
entry to the field by new students or practition-
ers. Third, full-stack open-source tools enable the 
quantification of improvements across the entire 
EDA flow. Since it is possible that improvements 
in one EDA stage are masked by downstream 
tools, evaluation within the context of a full stack 
of open-source EDA tools ensures that these 
improvements stick till the end. Fourth, open-
source tools with standard I/O format exchanges 
enable a healthy ecosystem to develop between 
open-source tools and closed-source industrial 
tools, leading to faster dissemination of knowl-
edge between academia and industry. Fifth, 
open-source EDA tools lead to a more trustworthy 
design process since the scrutinizing of an open-
source tool by a community of developers can 
identify any backdoors that lead to the capture 

Digital Object Identifier 10.1109/MDAT.2020.3038851

Date of current version: 8 April 2021.

Sherief Reda
Brown University

Leon Stok
IBM

Pierre-Emmanuel Gaillardon
University of Utah
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of sensitive design information or potential inser-
tion of hardware Trojans.

Open-source development leads to special 
challenges. First, there is a need for common 
infrastructure tools, such as EDA databases that 
consolidate shared tasks, such as data structures 
for internal circuit representations and reading/
writing of standard I/O EDA formats. Second, there 
is a need for open-source tools to fully interoper-
ate with physical design kits (PDKs) and libraries. 
Existing open-source PDKs and libraries (e.g., 
FreePDK45nm) do not map to any real manufac-
turing flows. However, recent efforts by Google 
and Skywater to release a full manufacturing 
PDK in 130 nm provide a hopeful path [4], where 
other vendors might follow suit and open-source 
the PDKs and libraries of some of their mature 
technology nodes. Third, open-source tools need 
maintenance beyond their release, requiring long-
term commitment and funding. Thus, developing 
and engaging a community of developers through 
collaborative platforms, e.g., Github, is essential 
for long-term success.

In this issue, we have collected papers that 
touch upon key parts of the design flow. A 
requirement in the review process was that the 
code is released as open-source, and all the 
tools released with the special issue are given in 
Table 1.

The first series of articles introduces complete 
flows, addressing a specific design category, 
namely analog, synchronous digital, and asyn-
chronous digital. First, analog layout tools are a 
key part of any electronic design system. They 
are as essential to analog design as they are to 
digital design where they are used to design the 
cell libraries, memory cells, and all key analog 
components. The paper titled “ALIGN: A System 

for Automating Analog Layout” describes a cor-
rect by construction approach to synthesize elec-
trically and designs compliant design. By taking 
advantage of layout hierarchies the authors are 
able to apply this to an interesting class of cir-
cuits. The second paper on analog design flows 
is titled “MAGICAL: An Open-Source Fully Auto-
mated Analog IC Layout System from Netlist to 
GDSII,” where it presents MAGICAL, which is a 
fully automated analog IC layout system. MAGI-
CAL takes a netlist and design rules as inputs and 
it produces the final GDS layout in a fully auto-
mated fashion. For asynchronous logic flows, 
the paper titled “An Open-Source EDA Flow for 
Asynchronous Logic” presents an open-source 
EDA flow for digital asynchronous circuits, capa-
ble of supporting many different families of asyn-
chronous circuit families from logic synthesis all 
the way down to GDSII. Finally, the paper titled 
“Real Silicon Using Open-Source EDA” demon-
strates that complete open-source tooling can be 
used to design industrial quality digital circuits. 
Using the OpenLane framework, based itself on 
the OpenROAD tool [5], the authors show a com-
plete set of RISCV-based SoC.

In addition to complete flows, the second 
series of articles introduces specific point tools. 
Design for test (DFT) is an integral part of the 
design flow. An open-source DFT flow is there-
fore essential for any open-source solution. The 
paper titled “Fault: Open-Source EDA’s Missing 
DFT Toolchain” describes an approach to fill in 
this missing piece. The paper titled “PyH2: Using 
PyMTL3 to Create Productive and Open-Source 
Hardware Testing Methodologies” proposes a 
new model testing and verification methodol-
ogy, PyH2, using property-based random testing 
in Python. PyH2 leverages the whole Python eco-
system to build test benches and models. The 
paper “OpenTimer v2: A Parallel Incremental 
Timing Analysis Engine” introduces a high-qual-
ity open-source static timing analysis engine that 
is capable of parallel incremental timing and that 
provides an efficient API to facilitate the devel-
opment of complex EDA tools. Finally, the paper 
titled “CATNAP-Sim: A Comprehensive Explora-
tion and a Nonvolatile Processor Simulator for 
Energy Harvesting Systems” introduces an archi-
tecture exploration tool to study and understand 
the tradeoffs of future processor systems using 

Table 1. Open-source tools released for articles 
in this special issue.
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 Direct questions and comments about this article to 
Sherief Reda, School of Engineering, Brown University, 
Providence, RI 02912 USA; sherief_reda@brown.edu.

nonvolatile memory and help guide the design 
of the future.

We hope you enjoy the articles and tools that 
are available with this special issue. 
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Editor’s notes:
This article describes a correct by construction approach to synthesize 
electrically and designs compliant design. By taking advantage of layout 
hierarchies the authors are able to apply this to an interesting class of circuits.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 AnAlog lAyout, Intelligently Generated from 
Netlists (ALIGN) [1] is an open-source layout genera-
tor for analog circuits that is currently under develop-
ment. Version 1 of the software flow was released in 
August 2020. The ALIGN project engages a joint aca-
demic/industry team to translate a SPICE-level netlist 
into a physical layout, with a 24-hour turnaround and 
no human in the loop. The ALIGN flow inputs a netlist 
of the topology and transistor sizes of which have 
already been chosen, specifications, and a process 
design kit (PDK), and outputs GDSII.

ALIGN: A System for 
Automating Analog 
Layout
Tonmoy Dhar and Kishor Kunal
University of Minnesota

Yaguang Li
Texas A&M University

Meghna Madhusudan, Jitesh Poojary, and 
Arvind K. Sharma
University of Minnesota

Wenbin Xu
Texas A&M University

Steven M. Burns
Intel Labs

Digital Object Identifier 10.1109/MDAT.2020.3042177
Date of publication: 3 December 2020; date of current version:  
8 April 2021.

The philosophy of ALIGN is to com-
positioally synthesize the layout by first 
identifying layout hierarchies in the 
netlist, then generating correct-by-con-
struction layouts at the lowest level of 
the hierarchy, and finally assembling 
blocks at each level of hierarchy during 
placement and routing. Thus, a key step 
in ALIGN is to identify these hierarchies 

to recognize the building blocks of the design. In 
doing so, ALIGN mimics the human designer, who 
identifies known blocks, lays them out, and then 
builds the overall layout hierarchically. At the low-
est level of this hierarchy is an individual transis-
tor; these transistors are then combined into larger 
fundamental primitives [e.g., differential pairs and 
current mirrors], then modules [e.g., operational 
transconductance amplifiers (OTAs)], up through 
several levels of hierarchy to the system level [e.g., 
a radio-frequency (RF) transceiver]. ALIGN uses 
a mix of algorithmic techniques, template-driven 
design, and machine learning (ML) to create lay-
outs that are at the level of sophistication of the 
expert designer.

Ramesh Harjani 
University of Minnesota

Jiang Hu
Texas A&M University

Desmond A. Kirkpatrick, Parijat Mukherjee, 
and Soner Yaldiz
Intel Labs

Sachin S. Sapatnekar
University of Minnesota
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Unlike digital designs that are built from a compo-
sition of a small number of building blocks, analog 
circuits tend to use a wide variety of structures. Each 
of these has its own constraints and requirements, 
and traditionally only the expert designer has been 
able to build circuits that could deliver high per-
formance. ALIGN targets a wide variety of analog 
designs, in both bulk and FinFET technologies, cov-
ering four broad classes of functionality:

• Low-frequency components that include analog- 
to-digital converters (ADCs), amplifiers, and filters.

• Wireline components that include clock/data 
recovery, equalizers, and phase interpolators.

• RF/wireless components that implement trans-
mitters, receivers, etc.

• Power delivery components that include capaci-
tor- and inductor-based DC-to-DC converters.

Each class is characterized by similar building 
blocks that may have a similar set of performance 
parameters, although it should be mentioned that 
there is considerable diversity even within each 
class. An overview of factors that are important for 
designs in each category is summarized in Figure 1.

There have been several prior efforts to automate 
analog layout synthesis [2]–[8], but these methods 
are not widely deployed in tools today. Some meth-
ods address limited classes of designs; others cannot 
be tuned to handle a wide enough set of variants 
of the same design class. Moreover, there is a gen-
eral consensus that prior methods for automating 
analog layout have been unable to match the expert 
designer, both in terms of the ability to comprehend 
and implement specialized layout tricks and the num-
ber and variety of topologies with circuit-specific con-
straints. The ultimate goal for analog layout synthesis 
is to reach the quality of a hand-crafted design.

In recent years, the landscape has shifted in 
several ways, making automated layout solutions 
attractive. First, in nanometer-scale technologies, 
restricted design rules with fixed pitches and unidi-
rectional routing limit the full freedom of layout that 
was available in older technologies, thus reducing 
the design space to be explored during layout, reduc-
ing the advantage to the human expert. Second, 
today more analog blocks are required in integrated 
systems than before, and several of these require 
correct functionality and modest performance. The 
combination of increasing analog content with the 
relaxation in specifications creates a sweet spot 

for analog automation. Even for high-performance 
blocks, an automated layout generator could con-
siderably reduce the iterations between circuit opti-
mization and layout, where layout generation is the 
primary bottleneck. Third, the advent of ML provides 
the promise for attacking the analog layout problem 
in a manner that was not previously possible, and set 
the stage for no-human-in-the-loop design.

This article provides an overview of the technical 
details of ALIGN and shows how ALIGN has been used 
to translate analog circuit netlists to layouts. The core 
ALIGN engine can be run with no human in the loop, 
enabled by ML algorithms that perform the functions 
typically performed by humans, e.g., recognizing hier-
archies in the circuit during auto-annotation, or gener-
ating symmetry constraints for layout. ML algorithms 
can also be instrumental in creating rapid electrical 
constraint checkers, which verify whether a candi-
date placement/routing solution meets performance 
constraints or not, and using this to guide the place-
and-route engine toward optima that meet all specifi-
cations. For more in-depth details, the reader is referred 
to detailed descriptions given in [9]–[12], and to watch 
for new publications of ongoing work by our group.

Technical core of ALIGN
The ALIGN flow consists of five modules, illus-

trated in Figure 2:

• Netlist auto-annotation creates a multilevel hier-
archical representation of the input netlist and 
identifies structural symmetries in the netlist. This 
is a key step that is used to hierarchically build 
the layout of the circuit.

Figure 1. Classification of analog circuits, showing 
the factors that are important for each category of 
circuits.
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• Design rule capture abstracts the proprietary PDK 
into a simplified grid, appended with Boolean 
constraints as needed, that must be obeyed at all 
steps during layout.

• Constraint generation identifies the performance 
constraints to be met and transforms them into 
layout constraints, such as maximum allowable 
net lengths, or constraints such as matching/
common-centroid based on structural informa-
tion identified during auto-annotation.

• Parameterized primitive cell generation automati-
cally builds layouts for primitives, the lowest-level 
blocks in the ALIGN hierarchy. Primitives typically 
contain a small number of transistor structures 
(each of which may be implemented using multi-
ple fins and/or fingers). A parameterized instance 
of a primitive in the netlist is automatically trans-
lated to a GDSII layout in this step.

• Hierarchical block assembly performs placement 
and routing on the hierarchical circuit structure 
while meeting geometric and electrical constraints.

The flow creates a separation between the open-
source code and proprietary data. Proprietary PDK 
models must be translated into an abstraction that is 
used by the layout generators. Parts of the flow are 
driven by ML models: the flow provides the infrastruc-
ture for training these models on proprietary data.

The overall ALIGN flow is intended to support no-hu-
man-in-the-loop design. However, the flow is modular 
and supports multiple entry points: for example, the 
auto-annotation module could be replaced by designer 
annotation, and the rest of the flow could be executed 
using this annotation. The flow is flexible to user input: 
for example, the user can specify new primitives, and 

they will be used by the annotation module as well as 
the layout generator within the flow.

Netlist auto-annotation
This step groups transistors and passives in the 

input netlist into a hierarchical set of building blocks 
and identifies constraints on the layout of each 
block. The input to ALIGN is a SPICE netlist that is 
converted to a graph representation. Next, features 
of the graph are recognized, and a circuit hierarchy 
is created. If the input netlist is partitioned into sub-
circuits, such information is used during recognition, 
but ALIGN does not count on the netlist hierarchy. 
Instead, hierarchies are automatically identified and 
annotated. It is important to note that the best layout 
hierarchy may sometimes differ from a logical netlist 
hierarchy; hence, ALIGN may flatten netlist hierar-
chies to build high-quality layouts.

Analog designers typically choose from a large 
number of variants of each design block, e.g., between 
textbooks and research papers, there are well over 100 
widely used OTA topologies of various types (e.g., tel-
escopic, folded cascode, Miller-compensated). Prior 
methods are library-based (i.e., they match a circuit 
to prespecified templates) [5] or knowledge-based 
(i.e., they determine block functionality using a set of 
encoded rules) [2], or both [13]. Library-based meth-
ods require a large library, while rule-based methods 
must be supported by an exhaustive knowledge base, 
both of which are hard to build and maintain. ALIGN 
uses two approaches for annotating circuits blocks, 
both based on representing the circuit connectivity 
using a graph representation:

(1) ML-based methods: For commonly encountered 
blocks, the problem of identifying blocks maps on to 

Figure 2. Overview of the ALIGN flow.
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whether a subgraph of the larger circuit is to isomor-
phic to a known cell. However, to allow for design 
variants, ALIGN uses approximate graph isomorphism, 
enabled by the use of graph convolutional neural net-
works (GCNs) that classify nodes within the circuit 
graph into classes [e.g., OTA nodes, low-noise amplifier 
(LNA) nodes, and mixer nodes]. With some minimal 
postprocessing, it is demonstrated that this approach 
results in excellent block recognition. Details of the 
approach are provided in [9]. A training set for the 
GCN, consisting of 1390 OTA circuits, including bias 
networks, is available on the ALIGN GitHub repository.

(2) Graph-traversal-based methods: It is unrealistic to 
build a training set that covers every possible analog 
block, and for blocks that lie outside the scope of the 
GCN training set, we use graph-based approaches to 
recognize repeated structures within a circuit. Such 
structures typically require layout constraints: for exam-
ple, ADCs may use a set of binary-weighted capacitors 
or a set of resistors in an R-2R ladder, and these require 
careful placement in common-centroid fashion and 
symmetric routing. ALIGN employs methods based 
on graph traversal and approximate subgraph isomor-
phism to recognize these array structures.

Once these structures are recognized in a very 
large circuit graph, they form a level of the hierarchy. 
Within these blocks, lower hierarchical levels can be 
detected using conventional subgraph isomorphism 
methods: sub-blocks at these levels have fewer vari-
ants and can be efficiently recognized using library-
based approaches.

Figure 3 shows the results of auto-annotation on a 
switched-capacitor (SC) filter. A GCN-based approach 

can be used to identify the current-mirror OTA, and 
then primitives within the OTA can be identified. In the 
process, lines of symmetry within each structure can be 
found, as illustrated in the figure. At the primitive level, 
since the layouts are generated by the parameterized 
cell generator, these lines of symmetry are implicit in 
the definition of the primitive. At higher levels, these 
can be inferred during auto-annotation.

Design rule abstraction
The ALIGN layout tools are guided by pro-

cess-specific design rules that ensure design rule cor-
rectness. The complexity of design rules has grown 
significantly in recent process generations. Efforts at 
building generalized abstractions for process rules 
have previously been proposed (e.g., [14]). ALIGN 
uses a more efficient design rule abstraction mech-
anism that creates fixed grid structures in FEOL and 
BEOL layers, as illustrated in Figure 4. Major grids 
(bold lines) represent centerlines for routes, while 
minor grids (dashed lines) correspond to stopping 
points for features. The gridding structure and basic 
process information are abstracted into a JSON file. 
For BEOL layers, this includes:

• default wire dimensions, pitch, and grid offset 
(Pitch, Width, MinL, MaxL, Offset);

• end-to-end spacing design rules (EndToEnd);
• metal direction, colors (Direction, Color);
• via rules (Space{X/Y}, Width{X/Y}, 

VencA_{L/H}, VencP_{L,H}).

While this is superficially similar to tradi-
tional λ-rules, our abstraction permits a different 

Figure 3. Extracting netlist hierarchy during auto-annotation.
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gridding structure that can vary from layer to layer, 
and the use of major/minor grid lines that repre-
sent wire pitches, wire overhangs, as well as the 
ability to incorporate via rules through Boolean 
constraints. Our approach reduces the complex 
set of conditions embedded in thousands of rules 
in a design rule manual to a massively simplified 
and much smaller set, enforcing some limitations 
through the choice of grids. It is found, through 
comparisons with manual design, that this leads 
to minimal or zero degradation in layout quality. 
Advanced commercial process nodes (22, 10, 
7 nm, and beyond) have been abstracted into this 
simplified form. The abstraction enables layout 
tools to comprehend PDK features such as regu-
lar and irregular width and spacing grids (for each 
layer), minimum end-to-end spacing design rules 
(between metals in the same track), minimum 
length design rules, and enforced stopping point 
grids. For convenience, the JSON file also encodes 
per unit parasitics for metal layers and vias.

To facilitate further layout research, we have 
released design rules for mock PDKs based on pub-
lic-domain information to abstract layout rules at 
a 14-nm FinFET node [15] and a 65-nm bulk node 
[16]. Although they do not represent real technolo-
gies, they are realistic. Validation of the design tools 

on these PDKs, which can be freely shared, helps the 
software development process.

Constraint generation
Two types of constraints are generated to guide 

layout.
(1) Geometric constraints: As the auto-annotation 

step recognizes known blocks or array structures, 
it associates geometric requirements with these 
blocks, such as symmetry, matching, and com-
mon-centroid constraints. For instance, Figure 3 
shows lines of symmetry in an OTA structure that 
must be respected during layout. These constraints 
are extracted naturally as part of auto-annotation. In 
contrast with prior methods that are based on sim-
ulation-intensive sensitivity analysis [17] or graph 
traversal-based exact matching to templates [5], 
the approach in the ALIGN method [10] combines 
graph traversal methods with ML-based methods 
and is computationally efficient, and capable of 
finding hierarchically nested symmetry constraints 
even under approximate matches.

(2) Electrical constraints: ALIGN generates a lay-
out based on a fixed netlist, and performance shifts 
are driven by changes in parasitics from netlist-
level estimates to post layout values. Therefore, 
ALIGN translates electrical constraints to bound 
the maximum parasitics at any node of the circuit. 

Figure 4. Design rule abstraction using per-layer grids and rules.
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For instance, an electrical constraint may be trans-
lated to a maximum limit on the resistance of a wire 
connecting two nodes, which in turn corresponds 
to a constraint on the maximum length, the number 
of parallel metal tracks, and the number of vias on 
the route connecting these nodes. This feature is cur-
rently being implemented in ALIGN [11], [12] and is 
a work in progress. The essential idea is to develop 
a fast ML inference engine that operates within the 
inner loop of an iterative placer, and for each placer 
configuration, determines whether its electrical con-
straints are satisfied.

These constraints are passed on to the layout 
generation engine to guide layout at all levels 
of hierarchy.

Parameterized primitive layout generation
ALIGN provides the user with a predefined 

library of parameterizable primitives, as illustrated 
in Figure 5. Each primitive consists of a small num-
ber of transistor or passive units; however, each such 
unit may consist of multiple replicated structures, 
such as multifin/multifinger transistors, or resistive/
capacitive arrays.

The primitive cell layout follows the gridded 
abstraction defined by the design rules, and cell 
generation can be parameterized in terms of the 
unit cell and the number of unit cells, as shown 
in Figure 6. For a transistor, a unit cell may be 
parameterized by the number of fins in a FinFET 
technology; for a capacitor, parameterization 
may correspond to the size of the unit capacitor. 
Additionally, primitive layouts can be parameter-
ized by their aspect ratio, their layout style (com-
mon-centroid versus interdigitated transistors), 
the gate length, the effective widths of critical 
wires in the cell, etc.

The utility in recognizing primitives and creat-
ing parameterized layouts is in enabling ALIGN 
to create layouts that incorporate the appropriate 
geometric constraints (e.g., symmetry or com-
mon-centroid). In principle, a layout could be 
built using a “sea of transistors,” where the primi-
tive corresponds to a single transistor, but it would 
be challenging for such an approach to enforce 
symmetry requirements beyond the transistor 
primitives. Prior methods for primitive layout gen-
eration [18]–[21] have generally not been as mod-
ular or scalable as the ALIGN approach.

Hierachical block assembly
Given the layouts of all primitives and the hierar-

chical block-level structure of the circuit, extracted 

during auto-annotation, the placement, and rout-

ing step performs hierarchical block assembly that 

obeys the geometric and electrical constraints 

described earlier.

Each layout block in the hierarchy can have mul-

tiple layout options with different shapes generated 

for each module. For example, primitives can be 

parameterized by aspect ratio, and multiple aspect 

ratios for other blocks may be generated. Flexible 

shapes drive floorplanning-like placement algo-

rithms that deliver compact layouts under the electri-

cal and geometric constraints passed on to them by 

the constraint generation step. Routing is integrated 

into each hierarchical level, accounting for net 

length/parasitic constraints, shielding and symmetry 

requirements, and conforming with the design rules 

embedded into the PDK abstraction. The placer is 

based on prior work using the sequence pair method 

[7] and can handle general geometric constraints, 

such as symmetry, matching, and alignment. Sym-

metry, shielding, and resistance-constrained routing 

are supported during routing.

The ALIGN flow can employ one of the two 

detailed routers.

Figure 5. Examples of primitive structures.
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• A constructive router that uses an integer linear pro-
gramming formulation and an A* algorithm; this 
works particularly well for more sparse designs.

• A satisfiability-based detailed router,1 released by 
Intel, is well suited for congested designs.

Working in an open-source environment

Why open-source software?
Aside from technical innovations, ALIGN breaks 

new ground in providing a fully open-source analog 
layout software flow, which has not been available 
in the past. The availability of open-source soft-
ware is crucial for nurturing future innovations in 
the field. First, further research can build upon a 
“piece of the puzzle” of analog layout design: for 
instance, a new cell generator can plug into the 
open-source ALIGN flow and show end-to-end 
results from netlist to layout, rather than providing 
limited results at the end of cell generation. Sec-
ond, open-source enables a path to ensure that 
reported results can be reproducible. The traction 
for open-source is evidenced not only through the 
efforts in ALIGN, but also in other notable efforts 
on analog layout [22] and digital layout (including 
back-end infrastructure such as parasitic extraction 
on power delivery that is more broadly applicable 
to any other class of design) [23].

Open-source designs
Unlike digital designs, where a wealth of 

designs exists in the public domain, the font of 

1 github.com/ALIGN-analoglayout/AnalogDetailedRouter

analog designs is very sparse. Design parameters 
tend to be closely linked with process nodes, and 
existing automation flows do not allow robust 
circuit optimization to meet constraints. Sharing 
designs based on a commercial PDK over multi-
ple institutions requires a multiway nondisclosure 
agreement involving the institutions, the foundry, 
and the foundry access provider. Within the ALIGN 
team, this issue was complicated by the need for 
such an agreement to cover both academic and 
industry team members.

The ALIGN GitHub repository hosts a number 
of sized analog netlists, a set that is growing, to 
facilitate open research. These netlists contain test 
benches that measure the performance parame-
ters of the circuit to verify its adherence to specifi-
cations. Moreover, as stated earlier, the repository 
contains unsized netlist topologies for a variety of 
OTA circuits.

Software infrastructure
The software flow is maintained on a GitHub 

repository [24] and maybe downloaded and 
installed in a native Linux environment. Alterna-
tively, it may be run in a lightweight Docker con-
tainer that performs operating system virtualization 
and enables portability and ease of maintenance. 
ALIGN can leverage the use of other open-source 
tools such as the KLayout layout viewer. The core 
software flow is Python-based, and the computa-
tionally intensive engines—notably the placer and 
router—are implemented in C++.

The project is aided by the use of tools that are 
vital to an open-source infrastructure with continuous 

Figure 6. Parameterization of primitive layouts.
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integration (CI). These include CI build flows, using 
CircleCI, for automated building of new components 
as they are added to the repository; unit testing, using 
pytest, to verify the correctness of individual units of 
source code that is added to the repository; code cov-
erage to measure how much of the code is executed 
by the automated tests, using coverage.py with Code-
cov for tracking; and automated code review for code 
quality checks using Codacy.

Results
The ALIGN flow has been applied to gener-

ate layouts for circuits that lie in all four classes: 
1) low-frequency analog; 2) wireline; 3) wireless; 
and 4) power delivery. We are unaware of a prior 
layout generator that has been demonstrated to 
handle such a broad class of circuits. Figure 7 
illustrates a sample set of layouts generated using 
ALIGN: these include a current-mirror OTA with 
bias circuitry and its power grid (Figure 7b), an SC 
filter containing the OTA (Figure 7c), an ADC (all 
low-frequency analog), a bandpass filter (Figure 7e) 
(wireless), an SC DC-to-DC converter (Figure 7a) 
(power delivery), and an equalizer (Figure 7f) and 
an optical receiver (Figure 7g) (both wireline). The 
layouts are compact and regular.

A set of representative results for the post lay-
out performance analysis of ALIGN-generated 
layouts for the OTA (Figure 7b) and the SC fil-
ter (Figure 7c) containing the OTA are shown 
in Tables 1 and 2, respectively. For the larger 

Figure 7. Sample layouts generated by 

ALIGN. Note that the block sizes are 

different; the layouts are not on the 

same scale. (a) SC DC-to-DC converter. 

(b) OTA with bias circuitry. (c) SC 

filter. (d) ADC. (e) Bandpass filter. 

(f) Equalizer. (g) Optical receiver.

 
Table 1. Postlayout performance analysis of the ALIGN-
generated OTA layout.

 
Table 2. Postlayout performance analysis of the ALIGN-generated 
SC filter layout.
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block, the SC filter, the extraction results show a 
good match with the schematic simulation (this 
level of mismatch between schematic and layout 
performance is quite normal in analog design), 
attesting to the quality of the layout. Moreover, 
the layout respects symmetry constraints that 
are considered important by analog designers to 
guard against parasitic mismatch due to system-
atic variability. For both layouts, the performance 
of the ALIGN-generated layout is very close to 
that of the manual layout.

For a set of wireline circuits, Table 3 shows a com-
parison between the performance of the ALIGN-gen-
erated layout and a hand-crafted manual layout and 
demonstrates that the performance of both layouts 
is comparable.

this Article summArizes the current state 
of the ALIGN flow for automated analog layout 
synthesis. ALIGN is open-source and may be 
downloaded and used freely [24]. Currently, the 
project has seen about 24 months of develop-
ment, and can already synthesize layouts for a 
wide variety of analog circuits. It is expected that 
the capabilities of ALIGN will be enhanced sig-
nificantly over the next few years, handling more 
sophisticated circuits, more complex constraints, 
and improved software robustness. The inher-
ent hierarchical approach adopted by ALIGN 
is key to ensuring scalability of the software to 
larger designs in the future, while also providing 
high-quality solutions. 
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Editor’s notes:
This article presents MAGICAL, which is a fully automated analog IC layout 
system. MAGICAL takes a netlist and design rules as inputs, and it produces 
the final GDS layout in a fully automated fashion.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 The expanding markeTs of emerging appli-
cations, including the Internet of Things (IoT), 
5G networks, advanced computing, healthcare 
electronics, etc., create large demands for analog 
and mixed-signal (AMS) integrated circuits. This 
increasing demand calls for a shorter design 
cycle and time-to-market. When compared with 
the tremendous advancements in digital IC lay-
out design automation tools, analog IC layout still 
remains a heavy manual, time-consuming, and 
error-prone task. This is due to its high design 
flexibility and sensitive impact on the circuit per-
formance by even minor changes in the layout 
implementation.

MAGICAL: An Open-
Source Fully Automated 
Analog IC Layout 
System from Netlist to 
GDSII
Hao Chen, Mingjie Liu, Biying Xu,  
Keren Zhu, Xiyuan Tang, Shaolan Li,  
Yibo Lin, Nan Sun, and David Z. Pan
The University of Texas at Austin 

Traditional analog lay-
out synthesis tools rely 
on various heuristic con-
straints to guide the lay-
out generation process 
[1]. These heuristics are 
based on human layout 
techniques and enforced 
during the placement 

of devices and routing. Heuristic constraint-based 
methods face extreme difficulties in practical design 
flows, where handcrafted constraints are often 
design and technology dependent, lacking flexibil-
ity and generalization when meeting the detailed 
requirements of different scenarios. There is also 
the challenge of hard-encoding all such constraints 
in a legal procedure, especially when numerous 
contradictory constraints are present. Analytical 
approaches attempt to uncover the layout design 
tradeoffs either by deriving closed-form equations in 
evaluating the layout-dependent effects or sensitivity 
analysis simulations. With increased device scaling, 
analytical sensitivity estimates of parasitics and mis-
match over performance are no longer accurate.

The most difficult thing above all is the limited 
availability of analog design tools. In contrast to the 
booming community of machine learning, where 
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popular frameworks and data sets are open-sourced, 
easily available, and heavily relied upon in research 
by the academic community, commonly used tools 
in analog design are largely proprietary. The lack 
of implemented frameworks, benchmark circuit 
data sets, and publicly available process design kits 
(PDKs), severely restrict the reproducibility of current 
research results and impede further improvement 
and extended research.

In this article, we present our work MAGICAL, a 
fully automated, end-to-end analog IC layout frame-
work that generates a completed layout from a 
circuit netlist. Implemented modules include sym-
metry constraint generation, placement, and routing. 
These modules are implemented in C++ for optimal 
software performance, and off-the-shelf with user-
friendly Python interface available. The source code1 
is released on GitHub with a number of sanitized 
benchmark circuits provided.2 The layouts completed 
by MAGICAL are validated using industrial standard 
verification tools, demonstrating circuit performances 
close to those handcrafted by experienced designers.

Compared with prior on procedural layout gen-
erators, such as Berkeley analog generator (BAG) 
[2], MAGICAL reduces the cost of codifying specific 
constraints and detailed layout implementation 
such as circuit floorplan and routing topology. This 
is achieved with automated symmetry extraction lev-
eraging pattern matching and graph similarity, and 
area and wirelength driven placement and routing 
optimization kernel. MAGICAL is also extensible to 

1https://github.com/magical-eda/MAGICAL
2https://github.com/magical-eda/MAGICAL-CIRCUITS 

handle custom constraints. We also present several 
of our research and findings that build upon the 
MAGICAL framework, including applied machine 
learning techniques, custom constraints, specific 
design considerations, and leveraging post layout 
simulation results for performance modeling and 
optimizations in the “Extensions based on MAG-
ICAL” section. Moreover, we hope to promote 
research and progress in the analog design auto-
mation community, where future researchers could 
embed new heuristics and algorithms leveraging our 
framework. Our tool also complements other exist-
ing design automation tools in the open-source com-
munity [2]–[4].

Magical framework
The overall flow of MAGICAL is shown in Figure 1. 

It takes an unannotated circuit netlist and design 
rules as inputs, and produces a complete GDSII 
layout as output fully automatically without human 
designers in the loop. The entire flow consists of four 
major modules, with each module being independ-
ent with a user-friendly Python interface. The design 
rules and the extracted layout constraints are hon-
ored throughout the entire back-end flow.

Framework methodology and software 
architecture

The MAGICAL system includes several individ-
ual submodules, i.e., layout constraint extractor, 
device generator, placer, and router. A top-level 
MAGICAL flow integrates the individual compo-
nents and manage the physical synthesis of the 

Figure 1. MAGICAL framework. (a) MAGICAL submodules. (b) MAGICAL hierarchical flow.
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circuits. Figure 1 shows the architecture of the 
MAGICAL layout system. This architecture is rooted 
upon the principle of divide-and-conquer nature of 
the circuit design and motivated by the purposes 
of creating an extensible and flexible open-source 
environment.

The designs of complex analog systems, such 
as phase-locked loops or analog-to-digital convert-
ers (ADCs), are typically decomposed into smaller 
building blocks (e.g., comparators, filters, or ampli-
fiers). Human designers adopt a top-down design 
methodology, where system-level performance is 
translated to lower-level building block specifica-
tions. The layout design process, on the other hand, 
is done bottom-up. The building block circuits are 
first implemented and the performance is optimized 
and verified. The system is then built with the build-
ing blocks. This divide-and-conquer practice avoids 
optimizing the whole system at once and decom-
poses it into smaller and more traceable subprob-
lems. MAGICAL adopts this design methodology. 
The whole physical synthesis is decomposed into 
multilevel homogeneous subproblems. The top 
MAGICAL flow manages and schedules the subprob-
lems, while the individual components build the lay-
out in the bottom-up manner.

The separation of submodules also allow easy 
extension to the default MAGICAL flow. Convention-
ally, different components in a physical design flow 
is connected by scripts and exchangeable files, for 
example [4]. However, the complicated scripting 
potentially make interaction between different com-
ponents difficult and hinder the flexibility on the flow. 
On the other hand, the popularity of machine learn-
ing algorithm also raises question that whether the 
conventional software methodology is suitable for the 
emerging framework. MAGICAL is developed for easy 
adaption of new components and changes on the 
flow. Although the main optimizing kernels are devel-
oped in C++ for better efficiency, each submodule 
has a Python interface. And the top level, MAGICAL 
flow uses Python interface to assign the subproblems. 
Such architecture is friendly to adoption of machine 
learning framework and makes interactions easy. In 
fact, there have been success on the extensions of 
default MAGICAL. The “Experimental results” section 
gives case studies of several MAGICAL extensions.

In the rest of this section, the default MAGICAL 
submodules are explained in the detail.

Parametric device generation
Before running the core layout flow, the device 

generation step first generates the layout of the 
devices and extracts their pins to facilitate the subse-
quent placement and routing stages.

The generated GDSII layout is correct by construc-
tion based on the design rules. MAGICAL currently 
supports numerous different device types, including 
pMOS, nMOS, metal–oxide–metal (MOM) capaci-
tors, and poly resisters. The automatic parametric 
device generation considers the number of fingers 
for transistors, the number of segments for resistors, 
the metal layers for MOM capacitors, etc.

The MAGICAL framework is also extensible for 
custom-designed devices, digital standard cells, or 
even subcircuits such as capacitor or resistor arrays.

Analog layout constraint extraction
The layout constraint extractor takes a circuit 

netlist as input and generates constraints to guide 
the later stages. Analog designs frequently use dif-
ferential topologies to reject common-mode noise 
and enhance circuit robustness and performance 
[5]. Thus, correctly identifying symmetry constraints 
between sensitive devices are crucial for ensuring 
the quality of placement and routing.

The constraint extraction reads in the input netlist 
and generates constraints for placement and rout-
ing based on the circuit connections. A significant 
challenge for constraint extraction is in generating 
high-quality constraints and resolving constraint 
ambiguity. Since the characteristics of symmetry 
among devices and between building blocks are 
vastly different, we use different methods to generate 
symmetry constraints.

Device symmetry
Only the symmetry constraints between devices 

need to be considered for building blocks. We adopt 
a method similar to the works of Eick et al. [6]. The 
building block circuit is abstracted into a graph. A 
pattern library of the commonly used differential 
topology of transistors is predefined. We use graph 
isomorphic algorithms to detect matching patterns 
on the building block circuits with the pattern library. 
The circuit graph is then traversed from the matched 
patterns to recognize new symmetry constraints of 
passive devices, self-symmetry devices, and symme-
try routing constraints.
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System symmetry
System symmetry differs from device symmetry 

because on the system level, template libraries are dif-
ficult to generate, and graph isomorphic algorithms 
are expensive. Since the same building block could 
be referenced multiple times in system design, we pro-
pose to extract graphs that include the neighboring 
circuit topology of the building blocks to resolve the 
ambiguity. The extracted graphs are then compared 
using an efficient graph similarity metric leveraging 
spectral graph analysis [7]. Self-symmetry constraints 
and symmetry net constraints could also be extracted 
similar to the approach in device symmetry.

Analog placement
Given the placement constraints and devices gen-

erated in the previous steps, we develop an analog 
placement engine. The placer places each device 
or building block in the layout satisfying the given 
constraints while optimizing for the wirelength and 
layout area.

The placement engine follows an analytical 
framework as in [8]. First, the global placement 
simultaneously optimizes multiple objectives in a 
nonlinear objective function to generate a rough 
legal placement. Then, the legalization step uses 
linear programming (LP) algorithm to leaglize the 
global placement results honoring input constraints 
and design rules. Finally, another LP-based detailed 
placement is used to optimize the wirelength further.

Analog routing
To determine the wire connections between all 

the placed devices while satisfying the design con-
siderations for better circuit performance, a con-
straint-aware analog routing algorithm is applied.

In addition to connectivity and design rules, an 
analog routing problem is usually imposed with sym-
metric net constraints, which are specified to ensure 
matched nets routed symmetrically on some axes. In 
MAGICAL, the routing engine takes the constraints 
specification as an input from the layout constraint 
generator and honors the symmetric and self-sym-
metric requirement for matched nets.

Our routing framework divides the routing prob-
lem into two stages, global routing and detailed rout-
ing, similar to the standard digital routing flow. To 
generated a global routing solution, a sequential sym-
metry-aware grid-based A* search routing engine is 
employed. The circuit is cut into unified grids whose 

width and height are decided based on track width 
on the first metal layer. More specifically, the global 
routing engine divides the layout into a 3-D graph 
with grids as the vertices and the connection between 
neighboring grids as the edges. The capacity of each 
edge is calculated based on free space modeling and 
the actual congestion inside the grids. The symme-
try-aware global routing algorithm using mirroring 
techniques then generates the solution for each net.

Given the global routing results as guidance, the 
detailed routing engine completes the final routing 
and assigns metal wire geometries. In contrast to 
digital circuits, analog designs usually have various 
metal widths and multiple via cuts for different nets, 
along with a number of special specifications such 
as symmetric constraints. To solve the detailed rout-
ing problem, the symmetric-aware A* path search-
ing algorithm is performed while satisfying design 
rules and specific requirements for each net (e.g., 
wire width). After the detailed routing stage, the final 
GDSII format layout file is exported.

Extensions based on magical
In this section, we present several of our research 

that builds on top of the default MAGICAL frame-
work. We hope to demonstrate the extensibility of 
the framework and the increased efficiency in the 
development of novel algorithms and methods by 
leveraging MAGICAL.

Machine learning guided well generation
Generating wells and inserting contacts are 

required in layout synthesis. The default MAGICAL 
framework generates separate NWELL contacts for 
each individual pMOS devices. This provides supe-
rior device isolation and reduction in well proximity 
effect at the increased overhead of area.

However, individual well contacts for transistor is 
seldom adopted in manual layout strategy. Sharing 
the same body connection leads to more compact 
layout. WellGAN [9] provides an alternative to the 
individual well contact. It formulates the well gener-
ation problem into a computer vision task and super-
visedly learns how human designers draw the well 
using generative adversarial network (GAN). After 
the training, the GAN model can generate images of 
well based on the placement results and a legaliza-
tion routine can draw the well and insert the con-
tacts based on the model prediction.
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Machine learning guided analog routing
In the default MAGICAL, the routing is targeting 

wirelength and geometric constraints. However, the 
router can be easily changed with a machine learn-
ing guided algorithm.

Zhu et al. [10] proposed GeniusRoute is developed 
upon the MAGICAL router. It attempts to learn the 
manual analog routing strategy by leveraging a varia-
tional autoencoder (VAE) model. Similar to WellGAN, 
GeniusRoute formulates the learning into an image 
generation task. The VAE models learn where human 
designers are likely to route the nets in analog circuits 
and generate prediction on unseen new circuits. The 
router is modified to adapt the routing prediction.

Analog placement quality prediction
In the default MAGICAL framework, the analog 

analytical placement engine only optimizes the 
wire-length and area. While the wire-length might be 
a natural surrogate for performance and highly cor-
related with the power and performance of digital 
circuits, analog layout performance rarely has strong 
relevance to the total wire-length. Thus, to satisfy 
post layout performance requirements and achieve 
design closure, a feedback loop from performance 
simulation to the design flow is needed in the devel-
opment of practical layout synthesis tools.

To reduce the design exploration runtime and 
limit the number of performance simulations, the 
work of Liu et al. [11] proposes to predict of the lay-
out quality early in the layout design flow. To over-
come the difficulty of obtaining high-quality human 

layout training data, MAGICAL was used to generate 

multiple layout solutions for the same circuits auto-

matically. An effective placement feature extraction 

method with 3-D convolution neural network was 

developed for effective placement quality predic-

tion. The number of training data needed to obtain 

satisfactory classification results was significantly 

reduced by leveraging transfer learning.

Efficient layout synthesis with Bayesian 
optimization

The works of Liu et al. [12] extended the default 

MAGICAL framework considering custom con-

straints and design-specific considerations. It lev-

erages post layout simulations in driving the layout 

implementation process for building block circuits. 

By formulating the performance optimization as a 

multiobjective black-box optimization problem, it 

closes the design loop and guarantees post layout 

performance through iterative simulations and a 

data-efficient Bayesian optimization algorithm.

Since system-level transistor simulation is unaf-

fordable, Liu et al. [12] optimized the system-level 

layout by extending the original MAGICAL frame-

work to include custom constraints and design 

specific considerations. Specific constraints and con-

siderations include net criticality, routing sequence, 

net spacing assignments, and regularized signal 

flow paths. The layout for a complete ADC system 

with regularized signal flow paths were generated, 

achieving close to schematic simulation results.

Figure 2. OTA results. (a) Circuit schematic. (b) Manual layout. (c) MAGICAL layout.
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Experimental results
The MAGICAL flow is implemented in Python 

and C/C++, and the experiments are performed on 
a Linux server with an 8-core 3.4-GHz Intel CPU and 
32-GB memory. All designs are in TSMC 40-nm tech-
nology. The layout results are validated using Calibre 
DRC/LVS/PEX, and evaluated using Cadence Virtu-
oso ADE simulation environment.

The post-layout simulation results for two bench-
mark circuits, a two-stage operational transconduct-
ance amplifier (OTA), and a continuous time ∆Σ 
modulator (CTDSM), are shown in Figures 2 and 3, 
respectively. The circuit performances of the OTA 
layout results generated by MAGICAL are compared 
against tape-out quality manual layouts by experi-
enced analog IC designers, under the same test bench 
suites. The simulation results are shown in Table 1, 
where UGB stands for the unity gain bandwidth, PM 
denotes the phase margin, and CMRR denotes the 
common-mode rejection ratio. The simulation results 
for the CTDSM are shown in Table 2, where Fs denotes 
the sampling frequency, BW is the bandwidth, SNDR 

denotes the signal-to-noise and distortion ratio, and 

SFDR denotes the spurious-free dynamic range. The 

results demonstrate that MAGICAL can automatically 

generate validated layouts from unannotated cir-

cuit netlist (both Spectre and HSPICE format), and 

the post-layout performances are close to the sche-

matic designs. Some performance metrics, includ-

ing input-referred offset and CMRR, could be further 

improved by extensively considering layout depend-

ent effects, minimizing coupling to sensitive nets, etc.

Future directions
Being part of the open-source hardware/EDA eco-

system, the future development of the MAGICAL will 

both benefit from and contribute to the community. 

Although the existing components in different open-

source EDA tools may have different algorithms and 

methodologies, there are some overlapping between 

their functionality. Both analog and digital layout 

automation flows share many common infrastruc-

tural components with MAGICAL. MAGICAL can learn 

from the recent emerging open-source EDA tools.

Besides the EDA tools, open-sourcing AMS cir-

cuit designs is another driving force for analog 

layout automation. On the one hand, lacking of 

training data has been a major challenge in machine 

learning-based EDA algorithm. On the other hand, 

the lack of a unified test circuit benchmark suite 

makes it difficult to evaluate and compare different 

analog EDA tools. Open-source designs will not only 

make it possible for the EDA tools to have common 

Figure 3. CTDSM results. (a) System architecture. 
(b) MAGICAL layout.

 
Table 2. CTDSM simulation results.

 
Table 1. OTA simulation results.
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evaluation metrics, but also provide training data for 
machine learning-based EDA algorithms.

While MAGICAL has demonstrated satisfactory 
results, it currently only minimizes post-layout circuit 
performance degradation implicitly by considering 
the analog layout constraints. Although direct opti-
mization methods have been applied and demon-
strated to be effective, the overhead of repetitive 
simulations is still expensive and impractical, espe-
cially for system-level designs. In the future research 
and development, MAGICAL will investigate into the 
performance-aware techniques, especially machine 
learning algorithms, throughout its entire flow.

Preliminary simulation results have also demon-
strated the potential of generating entire system-level 
designs with MAGICAL. However, MAGICAL still needs 
to improve its current placement and routing algo-
rithms for better design rule handling. Furthermore, 
there is still large room for improvement, especially 
for system-level designs, including circuit reliability, 
clock coupling mitigation, IR drop aware routing, 
and integration with digital flows. Generating tape-out 
quality layout designs proven with silicon chip meas-
urements will be the future goal of MAGICAL.

in This arTicle, we presented MAGICAL, an open-
source fully automated end-to-end analog IC layout 
system from circuit netlists to GDSII layouts. Human 
and machine intelligence are strategically incorpo-
rated into MAGICAL by pattern matching and deep 
learning techniques. The circuit performances of the 
layouts completed by MAGICAL are close to those 
handcrafted by experienced designers, while the 
design cycle is shortened substantially. 
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Editor’s notes:
This article presents an open-source EDA flow for digital asynchronous 
circuits, capable of supporting many different families of asynchronous 
circuit families from logic synthesis all the way down to GDSII.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 Scalable computer SyStemS are designed 
as a collection of modular components that com-
municate through well-defined interfaces. The inter-
faces must be robust to delays and uncertainty in the 
physical implementation of communication. This 
view applies to computer systems at many levels of 
abstraction. The Internet is a collection of communi-
cating computers with message passing through the 
Internet protocol. A modern datacenter is a collec-
tion of servers that communicate via message pass-
ing over commodity network hardware. Even large 
software systems consist of a collection of modules 
that use well-defined application programming inter-
faces (APIs) to communicate. Almost all computer 
systems disciplines have made the wise choice to 
partition their problem into components that com-
municate via protocols that are independent of their 
physical realization—such as timing, energy, or size.

An Open-Source EDA 
Flow for Asynchronous 
Logic
Samira Ataei, Wenmian Hua, Yihang Yang, 
and Rajit Manohar 
Yale University

Yi-Shan Lu, Jiayuan He, Sepideh Maleki, 
and Keshav Pingali
University of Texas at Austin

However, in current 
chip designs, this modular 
approach is abandoned in 
favor of global synchrony. 
A global synchronization 
signal (the “clock”) dic-
tates the time budget for 
every step of the compu-
tation—regardless of what 

is being computed.
Although this clocked design paradigm dominates 

the design of computers today, engineers are strug-
gling to preserve the fiction of simultaneity required 
by the clock, even within an individual chip. This 
struggle is an inevitable result of advancing technol-
ogy. As transistors get smaller and faster, the delay of 
communication over wires dominates the cost of local 
computation with transistors. Such progress renders 
the clocked paradigm a poorer and poorer abstraction 
for chip design. Modern application-specific integrated 
chips (ASICs) are designed as a collection of small-
clocked “islands” that communicate via interfaces that 
break the clocking abstraction.

To address this challenge, we are creating a col-
lection of open-source electronic design automation 
(EDA) tools that isolate the designer from the details 
of the physical implementation technology, especially 
when it comes to delays and timing uncertainty.1 

1 It is not possible to entirely decouple the logical correctness of a design from tim-
ing to create completely delay-insensitive circuits [1], [2]. However, it is possible to 
make a very mild and local timing assumption that is easy to satisfy in practice [3].
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The approach is based on an asynchronous, modular, 
and hierarchical design methodology for complex 
chips, and it permits component reuse from one 
technology to another with little or no modification. 
While individual modules of the chip can be clocked, 
the overall system uses an asynchronous integration 
approach to achieve modular composition. Hence, 
the EDA flow being developed supports a combina-
tion of timing styles in an integrated framework.

The algorithmic complexity of some of the impor-
tant steps in an EDA flow is higher when analyzing 
asynchronous circuits, which can have a major 
impact on the overall runtime of the flow. To reduce 
the turn-around time for designs, we are implement-
ing parallel versions of the key algorithms in the 
toolchain, using the Galois system described in the 
“Parallelism: The Galois framework” section. The 
Galois system supports the parallelization of irregu-
lar algorithms such as those in which the key data 
structures are graphs and hypergraphs. Since circuits 
can be viewed as hypergraphs, the Galois system is 
well-suited for this parallelization effort.

Asynchronous logic: A unified approach
There are a large number of different asynchronous 

logic families. Historically, each of these families was 
developed by different research groups, with differ-
ent terminology and design methodologies. Note that 
this is not that different from synchronous logic; any 
textbook on synchronous digital logic will describe a 
large number of options for synchronous design such 
as pseudo-nMOS logic, precharge logic, dual-rail dom-
ino logic, and self-resetting logic to name just a few 
options [4]. In addition, many circuit options for flip-
flops and latches are also described, and the merits 
of each discussed. Heterogeneity of this nature is dif-
ficult to incorporate into any automated design flow.

Instead, over the years, the mainstream industrial 
strength ASIC flow that is provided by the major EDA 
vendors converged on a core synchronous EDA 
flow that supported a limited set of options. Today 
those options include flip-flop and (some) latch-
based designs with excellent support for single-clock 
designs, and limited support for heterochronous 
designs. Circuit options were ignored in favor of 
standard-cell libraries with hand-optimized circuit 
layout for individual cells (an individual CMOS gate 
or a small collection of gates). This push was driven 
by industry and resulted in the standardization of 
what is viewed as the commercially supported ASIC 

flow today. Standardization led to interoperability 
and a rich intellectual property (IP) ecosystem. Mod-
ern ASIC design is as much about system integration 
as it is about writing the detailed hardware descrip-
tion language that describes the chip.

The same cannot be said about asynchronous 
logic. The convergence that occurred in the synchro-
nous domain did not occur in the asynchronous logic 
domain, and hence the EDA landscape for asynchro-
nous logic is quite bleak in comparison. While there 
have been many academic tools developed for indi-
vidual steps needed to go from a high-level description 
of an asynchronous design to a chip implementation, 
only a small number of complete flows have been 
developed. Example flows developed for asynchro-
nous design include Haste [5] and Balsa [6], and 
more recently Proteus [7]. Each of these flows sup-
ports a restricted style of asynchronous design and 
uses commercial synchronous tools for physical 
design automation. Since the synchronous physical 
design tools do not have a correct view of timing for 
asynchronous logic, conservative work-arounds are 
used to constrain the design to ensure a valid imple-
mentation. This approach has also been adopted by 
many academic groups to leverage the investment 
made by the commercial EDA industry.

Unified approach to asynchronous logic
Instead of developing an asynchronous logic 

flow that only supports a particular flavor of asyn-
chronous logic (a survey of some approaches can 
be found in [8]–[10]), the approach we adopt tack-
les the problem of heterogeneity of design styles and 
circuit approaches.

Commonalities
 Since one of the goals of adopting an asynchro-

nous approach is to create a modular design style, 
all the different approaches generally share the char-
acteristic that a design is partitioned into a collec-
tion of concurrently operating hardware modules 
(we call them processes, adopting the term from the 
concurrent computing literature) that communicate 
with each other using well-defined protocols on wire 
bundles (we call the bundles channels). Channels 
are used both for exchanging information as well 
as synchronization between processes. To support 
this abstraction, we use a hardware specification 
notation called CHP (for communicating hardware 
processes), an extension of Hoare’s communicating 
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sequential processes (CSP) language [11]. This is 
the highest level of abstraction and corresponds to 
a behavioral description of the asynchronous chip. 
A CHP description can be translated into different 
asynchronous logic families.

Differences
The origin of a large number of differences between 

varying approaches to asynchronous design stems from 
differing assumptions about timing. Purely delay-insen-
sitive circuits make no assumptions about the delays 
of gates or wires. This is an extremely robust approach 
and requires at least two output gates to be expressive 
enough [12]. No timing constraints have to be speci-
fied in this case. Quasi-delay-insensitive circuits and 
speed independent circuits require a timing assump-
tion called the isochronic fork [2], which translates to 
a wire delay versus path delay assumption [3]. Bun-
dled-data communication protocols require one wire 
(the request) to be slower than the data wires. Even 
though there is a large range of timing requirements, 
many of them can be expressed using a generalization 
of two approaches to specific timing constraints. The 
first is the approach used by synchronous timers to 
express hold time constraints for generated clocks. If 
a signal gc is a generated clock, and it is connected 
to two flip-flops, then the hold time constraint for the 
generated clock is a “point of divergence” constraint, 
where—starting from a root point—the maximum 
delay through one path has to be slower than the min-
imum delay through another path (see Figure 1). If the 
actual delay values are known, then .sdc constraints 
like set_min_delay and set_max_delay can be 
used to constrain the maximum and minimum delay 
on two paths so that they are ordered as required by 
the hold time constraint [13].

A second approach used by the asynchronous 
design community is generalized relative timing 
[14]. In this approach, constraints are specified on 
signal transition events. Hence, a point-of-divergence 
constraint would be expressed by using gc↑ as the 
anchor event and then using signal transitions at the 
input to the flip-flop from Figure 1. The challenge 
with using events (unlike paths in the synchronous 
case) is that events might have data-dependent 
occurrences. Also, if a signal can have switching 
hazards, it might result in more than one event cor-
responding to the change in the point of divergence.

To address these issues, we introduce a general 
version of both these notions that we call timing forks. 

A timing fork resembles a point-of-divergence con-
straint, except that it need not be a point of divergence. 
A timing fork a+ : b− < c+ is a constraint that specifies 
an error predicate. In any execution of the circuit, if the 
sequence a+ followed by c+ followed by b− occurs 
without an intervening a+, then the constraint is vio-
lated. This timing fork is based on recent research in 
the distributed systems literature that argues that events 
can be ordered only if there is a visible set of timing 
forks [15]. For isochronic forks, we need a notion of 
the near and far end of a wire; we augment the syntax 
of timing forks so that we can specify an input rather 
than the output of a gate. It should be clear that tim-
ing forks can express point-of-divergence constraints in 
a straightforward fashion. What is less obvious is that 
even when there is not a local point-of-divergence, one 
must exist at some point in the execution history in the 
absence of any absolute notion of time [15].

Bundled data asynchronous communication uses a 
request line and a data bundle, where the data bundle 
signals have to be stable once the request goes high in 
the most straightforward version of the protocol. The 
communication is initiated by control logic; suppose 
that c goes high to initiate the communication, the 
request signal is req, and di is one of the data signals. 
The timing constraint would be written c+ : di < 
req+. Note that a scenario where di does not change 
is also permitted by the meaning of a timing fork. We 
distinguish between multiple uses of the same set of 
bundled data wires because c+ will occur between 
each use of the wires.

The synchronous timing constraint shown in 
Figure 1 can be expressed using this notation in the 
following way: “gc+ : FF.CK+ < FF.D.” This 
states that any changes in the D pin of FF must occur 
after the CK pin goes high, where FF is the instance 
name of the flip-flop on the right-hand side in Figure 1.

Figure 1. Hold-time point-of-divergence constraint for 
generated clock gc.
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Since our timing constraints can specify both 
synchronous and asynchronous timing constraints, 
the flow supports a design with a mixture of synchro-
nous and asynchronous components. In particular, 
timing forks are sufficiently expressive to describe 
the timing constraints needed for quasi-delay-insen-
sitive circuits, GasP pipelines [16], bundled data 
communication, and high-speed transition signaling 
pipelines [17] to name a few circuit families.

Asynchronous circuit toolkit framework
The flow we have developed includes a design 

language called asynchronous circuit toolkit (ACT). 
ACT is a hierarchical design language that includes 
communication channels and encoded data values 
as first-class objects. The language supports represent-
ing circuits at multiple levels of abstraction, includ-
ing CHP, gate-level, and transistor-level descriptions. 
ACT is strongly typed, and the type system is used to 
track and specify many design constraints that tradi-
tionally are externally specified in commercial flows 
(e.g., using .sdc files). Timing forks can be included 
as part of the logic specification.

By using an integrated language that can be 
used at multiple levels of abstraction, we preserve 
the relationships between different levels of abstrac-
tion in the design throughout the design flow. These 
relationships are captured using ACT’s type system. 
Timing constraints between modules can be speci-
fied in the type-definition of communication chan-
nels—i.e., in the interface specification captured by 
the type signature of a component. Design tools can 
be viewed as transformations in the ACT framework. 
For example, logic synthesis elaborates a CHP-level 
description of a module into a gate-level description 
of the same module without changing its interface. 
Hence, constraints generated by logic synthesis are 
made available to the rest of the flow as part of the 
ACT language, and hence are visible to both timing 
analysis and place-and-route tools.

The history of this language can be traced to the Mini- 
MIPS project at Caltech, Pasadena, CA (1994–1999), 
where a simplified version of ACT was developed 
by Manohar to manage the design complexity of the 
MiniMIPS asynchronous processor design [18]. This 
language, called CAST (for Caltech Asynchronous syn-
thesis tools), was used to implement a microprocessor 
at the gate level of abstraction. This language was used 
both by Manohar’s group at Cornell as well as a startup 
company (Fulcrum Microsystems). CAST continued 

to evolve at Fulcrum Microsystems, which was even-
tually acquired by Intel in 2012; as part of their devel-
opment, Fulcrum also developed the Proteus flow [7]. 
The ACT language was created in 2005 as an evolution 
of CAST, and to overcome some of its limitations. This 
language was also used by Achronix Semiconductor, 
and to develop a number of chips at Cornell and Yale. 
An open-source version of this early version of ACT was 
also released [19]; these early versions of ACT were 
only designed to support quasi-delay-insensitive asyn-
chronous circuits.

The current ACT language [20] is the result of an 
evolution over almost three decades of research in 
asynchronous design grounded in the implementa-
tion of over a dozen asynchronous VLSI chips ranging 
in complexity from 0.5M transistors [21] to 5.4B tran-
sistors [22], and in technologies ranging from 0.6-µm 
CMOS to 28-nm CMOS. It is general enough to be able 
to express a wide range of asynchronous logic fam-
ilies and is the basis for the open-source EDA flow 
described in the “Open-source flow” section.

Keeping designs open
Our implementation of the ACT framework 

includes a number of configuration files. We have 
partitioned these files into two disjoint sets: 1) tech-
nology-independent and 2) technology-specific. The 
information in the technology-specific files corre-
sponds to items that may be covered by nondisclo-
sure agreements with foundries, and thus may not 
be distributed without the appropriate agreements 
in place. However, the goal is to ensure that the vast 
majority of the design can be distributed without 
reference to the details of the underlying technol-
ogy. Hence, while some of our tools cannot operate 
without detailed information from the foundry, the 
original logical design specified in the ACT frame-
work can be distributed without any embedded 
foundry-specific information because this informa-
tion is isolated to an input configuration file.

Integrating synchronous logic and other tools
The ACT tools are focused on supporting asyn-

chronous logic families. However, we expect that a 
complex system would require integration with other 
logic styles—in particular, synchronous logic. Since 
commercial EDA tools provide outstanding support 
for design styles commonly used by industry, we 
do not directly target synchronous logic in the ACT 
framework. Instead, we provide support for importing 
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a design as a Verilog netlist. Importing synchronous 
logic or asynchronous logic from other flows into the 
ACT framework also requires that timing constraints 
for imported signals be specified using timing forks.

Module-level integration is the most straightfor-
ward way to import a Verilog netlist; this also permits a 
designer from maximizing the use of mainstream tools. 
Our timing analysis engine will determine that the syn-
chronous logic and asynchronous logic are in different 
timing domains [23], and simply report timing for the 
different components separately. This is analogous to 
the scenario of an unrelated clock domain crossing 
that can occur in conventional EDA tools.

Asynchronous logic generated by any other 
approach can also be imported as long as the design 
is specified as a Verilog netlist, and the required tim-
ing constraints specified as timing forks. The ACT 
language also supports direct specification of logic 
using gates specified as pull-up and pull-down net-
works, by passing the CHP level of circuit descrip-
tion and the Verilog import process.

Parallelism: The Galois framework
Reducing the turn-around time of this design 

flow without sacrificing the quality of results is crit-
ical for future designs. We believe this goal can be 
achieved by parallelizing the core EDA algorithms. 
Since circuits can be viewed abstractly as graphs 
and hypergraphs, a system for supporting the design 
and implementation of a parallel EDA tool-chain 
must have the following characteristics.

· It must support clean abstractions for reasoning 
about and expressing the available parallelism in 
graph (and hypergraph) algorithms.

· It must hide parallelization details such as syn-
chronization from EDA algorithm designers.

· It must be scalable; as long as the algorithm 
has sufficient parallelism, performance should 
improve if more cores are used.

Operator formulation of algorithms
A clean abstraction for expressing parallelism 

in graph algorithms is the operator formulation, a 
data-centric abstraction in which algorithms are 
described as a composition of a local view and a 
global view of the computation.

The local view is described by an operator, which 
is a graph update rule applied to an active node in 
the graph (some algorithms have active edges). 

Each operator application, called an activity or 
action, reads and writes a small region of the graph 
around the active node, called the neighborhood of 
that activity. Figure 2 shows active nodes as filled 
dots, and neighborhoods as clouds surrounding 
active nodes, for a generic algorithm.

An active node becomes inactive once the activity 
is completed. Morph operators can modify the graph 
structure of the neighborhood by adding and removing 
nodes and edges. And-inverter graph (AIG) rewriting 
[24] deploys morph operators. Label computation oper-
ators, in contrast, only update labels on nodes and edges 
without changing the graph structure. Field programma-
ble gate array (FPGA) routing [25], formulated as a sin-
gle-source shortest path problem (SSSP) within a routing 
resource graph, uses label computation operators.

The global view of a graph algorithm is captured by 
the location of active nodes and the order in which activ-
ities must appear to be performed. Topology-driven algo-
rithms make a number of sweeps over the graph until 
some convergence criterion is met, for example, the Bell-
man–Ford SSSP algorithm. Data-driven algorithms begin 
with an initial set of active nodes, and other nodes may 
become active on the fly when activities are executed. 
They terminate when there are no more active nodes. 

Figure 2. Operator view of algorithms in 
Galois.
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Dijkstra’s SSSP algorithm is a data-driven algorithm. The 
second dimension of the global view of algorithms is 
ordering [26]. Activities in unordered algorithms such as 
SSSP can be performed in any order without violating 
program semantics, although some orders may be more 
efficient than others.

Parallelism can be exploited by processing active 
nodes in parallel, subject to neighborhood and 
ordering constraints. The resulting parallelism is 
called amorphous data parallelism. It is a generaliza-
tion of the standard notion of data parallelism [27].

Galois system
The Galois system implements this data-centric 

programming model (see details in [28]). Application 
programmers write programs in sequential C++, using 
certain programming patterns to highlight opportu-
nities for exploiting amorphous data parallelism. The 
Galois system provides a library of concurrent data 
structures, such as parallel graph and work-list imple-
mentations, and a runtime system. The data structures 
and runtime system ensure that each activity appears 
to execute atomically. In this way, the Galois system 
encapsulates parallelization details and realizes perfor-
mance scalability at the same time.

The Galois system has been used to implement 
parallel programs for many problem domains 
including finite-element simulations, n-body meth-
ods, graph analytics, intrusion detection in networks 
[29], FPGA routing [25], and AIG rewriting [24].

Open-source flow
The key steps of the design flow we have devel-

oped are as follows:

· design elaboration/expansion, which expands 
the design and customizes it based on parame-
ters specified by the user [20];

· technology mapping and gate generation, which 
identifies the unique gates needed to implement 
the asynchronous circuit and generates the lay-
out for the cells, if a new gate is found in the 
design [30], [31];

· static timing analysis, which implements the asyn-
chronous equivalent of timing analysis, determines 
the performance/power of the design, and checks 
any timing constraints needed for correctness [31];

· design partitioning and floor-planning;
· asynchronous timing-driven placement [32], [33];
· timing-driven global routing [34], followed by 

detailed routing to complete the physical imple-
mentation.

The rest of the steps are standard, including insert-
ing fill and adding the pads and seal ring. The flow is 
summarized in Figure 3. To inter-operate with commer-
cial tools, at key steps we can import/export designs 
using standard formats such as a Verilog netlist, simula-
tion program with integrated circuit emphasis (SPICE) 
netlist, and library exchange format (LEF)/design 
exchange format (DEF). We also accept parasitic infor-
mation via standard parasitic exchange format (SPEF) 
files, and timing information using the .lib format. All 
the tools—both those under development and those 
ready for use—will be distributed at [35].

Timing and power analysis
We have implemented a static timing analysis engine 

for asynchronous logic. Since asynchronous logic might 
have nonstandard gates, we also implemented a cell 
characterization engine that uses SPICE simulations to 
create .lib files for individual gates. The characterizer 
computes both delay and power tables for the gates.

Timing is one of the biggest differences between 
developing an asynchronous EDA flow and a syn-
chronous EDA flow. Asynchronous timing has 
to handle cyclic circuit structures. Our timing 
analysis flow includes the following major steps: 
1) creating an event-based timing graph for the 
asynchronous design from a gate-level representa-
tion; 2) estimating steady-state slew rates in cyclic Figure 3. Design flow for asynchronous logic.
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circuits; 3) analyzing the cycles in the event-based 
representation, and computing the critical cycle 
ratio which is a good metric of performance for 
the asynchronous circuit; 4) computing arrival 
time and required time for asynchronous circuits, 
and hence computing the performance slack for 
each node of the timing graph; and 5) computing 
the slack for timing forks.

When importing a design from a different flow 
as a “black box,” the timing graph fragment for the 
module must be included in the import (analogous 
to .lib files in synchronous logic). If a module is 
imported using a gate level netlist with timing forks, 
the event graph can be computed by our timing 
analysis engine.

Once event transitions are identified, we also 
compute the power consumption of the circuit. 
Since many of the steps needed by power analysis 
are the same as for timing analysis, we have inte-
grated the two into a single unified engine.

The time complexity of timing analysis is much 
higher than in the synchronous case because of step 
(3), which computes the critical cycle ratio. We use 
the parametric shortest path algorithm to compute 
this ratio [36], which provides better run-time per-
formance than previous approaches that use linear 
programming when the circuit size is large [31]. 
Another source of complexity is that the periodic-
ity of an asynchronous circuit may not be from one 
iteration to the next. Instead, a circuit might have an 
unfolding factor M, where the circuit timing is only 
periodic every M iterations [37], [38]. When M is 
high, timing propagation has to be performed on a 
graph that is logically the M -fold unfolding of the 
cyclic graph.

We have implemented our timing analysis engine 
using the Galois framework described in the “Paral-
lelism: The Galois framework” section. Our current 
implementation parallelizes the following parts of 
the full timing analysis: slew rate estimation, arrival 
time/required time, performance slack, and timing 
fork slack. The current runtime of our timing engine 
is shown in Table 1 with example circuits ranging 
from 0.3M –5.6M pins. The sequential runtime for 
large designs would be quite prohibitive—above 48 
minutes for the largest example. However, the Galois 
framework can transparently speed up our runtime 
by large factors; for the largest example, we achieve 
almost 20× speedup, resulting in a more manageable 
runtime of roughly 2.5 minutes.

The same timing propagation core can be used to 
perform timing analysis for synchronous circuits, and 
hence, we can compare the performance obtained 
using the Galois approach to parallelization versus 
existing synchronous timing analysis engines that 
support multithreaded execution. Table 2 shows 
the result of this comparison against OpenTimer, an 
open-source synchronous timing analysis engine that 
supports multithreaded execution [39], demonstrat-
ing that our parallel timing analysis core achieves 
good parallel performance.

Partitioning and floorplanning
For large designs, we have implemented a min-

cut-based approach to floorplanning and design 
partitioning. To this end, we have developed a deter-
ministic, parallel hypergraph-based partitioner using 
the Galois framework.

Our implementation uses the multilevel graph 
partitioning framework, where the original hyper-
graph is subjected to a number of coarsening steps 

 
Table 1. Runtime of static timing analysis implemented using the 
Galois framework on a 56-core Intel Xeon server. The numbers 
in parentheses specify the number of threads used to obtain the 
best runtime. “bd203*” is a bundled-data sample design; the 
others are heavily pipelined and desynchronized versions of 
their synchronous counterparts.

 
Table 2. Performance comparison of our timing engine core 
against a recent open-source synchronous timing analysis engine 
(OT = OpenTimer). The numbers in parentheses specify the 
number of threads used to obtain the best runtime. All times are 
in milliseconds.
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to create a much smaller hypergraph. The small 
hypergraph is then subjected to an initial partition-
ing. Finally, the small hypergraph is expanded out to 
the original graph by inverting the coarsening steps, 
and in each step, the partition is further refined.

Experimental results on a 28-core Intel Xeon show 
that our partitioner achieves 7× speedup for hyper-
graphs with roughly ten million nodes and 4–6× 
speedup for hypergraphs with 2–3 million nodes.

Placement
Asynchronous circuits make use of a wide range 

of gates, especially state-holding gates that have 
pull-up and pull-down networks that are not com-
plementary. The unbalanced pull-up and pull-down 
combined with keeper circuits for state-holding 
gates can lead to an inefficient layout using tradi-
tional single/double height standard cells. To alle-
viate this potential inefficiency, we have adapted 
existing standard-cell-based placement algorithms 
to account for cell heights that need not be uniform. 
We call this approach gridded-cell layout, where 
cells can have both height and width that is an inte-
ger multiple of a routing track [32]. Many techniques 
have been adapted for this nonstandard height cell 
layout approach, and new algorithms developed for 
both fast legalization and well-alignment in the pres-
ence of nonuniform cell heights.

Experimental results show that our current 
placer implementation is capable of handling large 
designs, with a performance that is almost an order 
of magnitude faster than commercial placers while 
suffering a 13% (geometric mean) quality loss when 
measured in terms of half-perimeter wire length.

When comparing standard cell versus nonstandard 
height cells for asynchronous logic, we found that our 
placement approach can improve density by 10%–17% 
compared to commercial standard-cell placers [32].

Global routing
The last major piece of the flow that we are devel-

oping is a parallel global router. We have developed 
SPRoute, a Galois-based parallel implementation of 
the FastRoute [40] global router. We use FastRoute 
because it has good sequential performance for the 
global routing problem.

SPRoute uses a novel two-phase parallel scheme to 
achieve good speedup. In the initial phase, SPRoute 
exploits net-level parallelism. In this approach, differ-
ent nets are routed in parallel. This proceeds until there 

is congestion because of a lack of routing resources. 
This phase can achieve significant speedup because 
uncongested regions do not have any resource con-
flicts and thus net routing can proceed in parallel. 
Once congestion is detected, SPRoute switches to fine-
grained parallelism where parallelism is exploited for 
frontier exploration during maze routing.

This scheme achieves 11× speedup with 0.6% 
quality of results reduction on a 28-core machine 
when compared to the baseline FastRoute imple-
mentation [34].

After global routing, the rest of the flow can pro-
ceed using standard tools since all the major deci-
sions that impact timing have been accounted for 
during placement and global routing. Figure 4 shows 
the routed design of a simple asynchronous bench-
mark circuit, where the detailed router used was a 
commercial tool. Note that the placement does not 
use the standard cell rows.

Memory compiler
The last major missing ingredient is a high-quality 

memory compiler. Almost every digital ASIC requires 
memory, and asynchronous designs are no different. 
While many commercial memories include self-
timed internal access, standard memory compilers 
provide a “black box” implementation that only pro-
vides a synchronous interface.

Figure 4. Routed example design in a 
65-nm process. Detailed routing was 
performed using a commercial EDA tool.



35March/April 2021

To address this challenge, we have built an 
asynchronous memory compiler (AMC) [41] that 
is based on the OpenRAM framework [42]. AMC 
makes a number of changes to the design of the 
SRAM it generates compared to its baseline Open-
RAM implementation: 1) it uses asynchronous logic 
to implement the control, and therefore provides 
an asynchronous interface to the core memory; 
2) it supports pipelined memory access for multi-
banked memories with multiple in-flight transac-
tions, where bank access is interleaved to improve 
effective throughput; 3) it supports subbanking 
with a hierarchical word-line structure to improve 
access time and reduce power consumption; 4) it 
supports technologies up to 28 nm, including thin 
cell and foundry cell bit-cells; and 5) it supports an 
atomic read-modify-write operation, which takes 
significantly less time than a read followed by a 
write. AMC includes a built-in self-test engine, as 
well as synchronous wrapper circuits (at reduced 
performance). Our comparisons show that the 
memories generated by AMC are competitive with 
published designs in the literature, as well as the 
memories available from the foundry [41].

Current status
We currently have a flow that can be used to design 

and implement quasi-delay-insensitive asynchronous 
circuits, as well as a restricted set of bundled-data cir-
cuits. The memory compiler has successfully been 
used to build memories in 65, 28, and 12 nm process 
technologies, as well as older technology nodes. The 
full flow has been exercised to design a mixed qua-
si-delay-insensitive/bundled data 65 nm ASIC and a 
28 nm ASIC is in progress. The key additional work 
needed to support a richer class of asynchronous 
circuits is a more general timing analysis engine fron-
tend. While the core timing analysis engine imple-
ments the algorithms needed for asynchronous timing 
analysis, the frontend that generates the input for the 
analysis engine is currently being improved so that it 
can support a richer set of asynchronous circuit fami-
lies. The rest of the physical design flow supports any 
asynchronous logic family. Finally, we are working on 
tighter integration of the timing analysis engine with 
all the steps in the design flow.

We have embarked on developing a high-quality 
open-source design flow for asynchronous circuits. In 
doing so, we developed a unified timing methodology 

that can handle both synchronous and a number of 
different asynchronous circuit families. By building 
this timing abstraction into all the key EDA tools, our 
goal is to create an extensible framework where EDA 
developers can easily support new circuit families.

Significant work is still required both for improv-
ing the run-time performance of certain aspects of 
the flow, as well as improving the quality of results 
of the design. Some of the major ongoing efforts 
include: improving the accuracy of timing analysis, 
as well as its run-time performance in the presence 
of millions of timing constraints; better incorpo-
ration of timing information into both placement 
and routing, as well as buffer insertion when timing 
constraints cannot be met during place and route; 
improved cell generation when a circuit is not found 
in the standard library; and extending configuration 
files and algorithms to support the requirements of 
sub-10-nm designs. 
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Editor’s notes:
This article demonstrates that complete open-source tooling can be used 
to design industrial quality digital circuits. Using the OpenLane framework, 
based itself on the OpenROAD tool 2, the authors show a complete set of 
RISCV-based SoC.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 Over the past 35 years, a number of academic 
open-source hardware design tools have been availa-
ble; most notably SPICE, SIS/VIS, and Magic from the 
Berkeley EECS Department, which has a long history 
in open-source EDA tools. Other notable academic 
contributions include IRSIM from Stanford, netcomp 
from Caltech, and TimberWolf from Yale (originally 
also Berkeley) [1], [2]. Some of these tools remain 
popular among integrated circuit (IC) designers 
and used over the years to address specific design 
tasks. But complete design flows and methodologies 
were missing until recently. The past five years have 
seen rapid development and emergence of several 
important, complete open-source EDA tool flows for 
the development of end-to-end ASIC designs. These 
flows have been enabled by the coincident emer-
gence of open-source EDA tools for field-program-
mable gate array (FPGA) synthesis, as well as repos-
itories of open-source digital designs both general 
(as found on the website opencores.org) and spe-
cific to the RISC-V open instruction set architecture 
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(ISA) from Berkeley EECS. FPGA design 
enjoys the benefit of a more soft-
ware-like tool flow, where designs can 
be tested and debugged in simulation 
or in situ. Both FPGA and digital ASIC 
design share the same front-end flow of 
digital synthesis. The robust and capa-
ble synthesis tool Yosys [3] has formed 
the backbone of open-source EDA tool 
flows for both FPGA and ASIC develop-

ment. For ASIC development, additional tools are 
needed to complete additional critical tasks such 
as memory (RAM) compiling, analog modeling and 
simulation, floor planning, chip integration, power 
analysis, design for test (DFT), design rule checking 
(DRC), and layout versus synthesis (or schematic) 
checking (LVS).

In this article, we show a progression of work in 
tools, flows, reference designs, and an overall eco-
system in which we have been able to demonstrate 
the practical use of available open-source EDA tool 
flows to design, manufacture, and validate chips 
with first-time success. We have attempted to keep 
these designs open-source from end to end; this fact 
distinguishes the authors’ efforts from other groups 
working on ASIC flows, as we start with open hard-
ware descriptions (e.g., the RISC-V ISA), and use 
open-source tools (e.g., Qflow), and make all of the 
tools and the reference designs available for use on 
an open platform (https://efabless.com) that is free 
(as in beer, as the saying goes) to register, access, 
and use, and free (as in freedom) of the usual con-
fidentiality agreements constraints of that typically 
exist between the ASIC designer, commercial EDA 
tool vendor, and foundry.

Mohamed Kassem
Efabless Corporation
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Although we make use of many tools and designs 
from many sources, inevitably we cannot fit them all 
into a single working flow. So while our work empha-
sizes Qflow and OpenROAD, we do not wish in any 
way to discount or detract from other important 
flows in use and under development, such as Corio-
lis [5], and tools both new (such as DrCU [6]), which 
we have not had the opportunity to investigate, and 
established (such as OpenTimer) for which we hap-
pen to have an acceptable alternative.

Qflow
One of the authors (Edwards) has been instru-

mental in keeping a number of the long-surviving 
open-source EDA tools alive and modernized with 
continual development and publicly available 
repositories for the past 25 years. Noting the lack 
of open-source digital synthesis flows (of which 
bits and pieces existed, but no complete end-to-
end flow), he put together some tools (such as the 
aforementioned Berkeley SIS/VIS, TimberWolf, and 
Magic) evolved from a script-based system written 
by then-colleague Steve Beccue, good for making 
small digital blocks in the context of mixed-signal 
systems. He posted this on his website opencircuit-
design.com [2] and called it “Qflow” (Figure 1).

In short, Qflow is a complete tool chain for synthe-
sizing digital circuits starting from verilog hardware 
description language (HDL) and ending in physical 
layout (in industry-standard GDSII format) for a spe-
cific target fabrication process. Qflow is an evolving 
and adaptable set of tools that aims to make use of 
any open-source component that can be made to 
work within the flow. Qflow incorporates Yosys for 
the front-end synthesis, Graywolf (a fork of Timber-
Wolf) for digital standard cell placement, and clock 
tree synthesis (CTS, which unusually for digital syn-
thesis flows is integrated into the placement tool); 
Vesta (an original tool written for Qflow) for static 
timing analysis (STA), and Qrouter (also an original 
tool written for Qflow) for global and detailed rout-
ing. Layout is completed in the editing tool Magic, 
which does DRC, circuit extraction and netlist gen-
eration, and final GDS format output generation. 
Extracted layout is checked against the synthesized 
netlist using the tool Netgen for final verification.

Raven microcontroller
Raven is one of the designs that are implemented 

using Qflow. The choice of architecture for the 

Raven processor (Figure 3a) was dictated by design 
IP availability and the tool flow capacity. To keep 
fabrication costs down, we selected an established 
0.18 µm process; in addition to the low cost, the 
mature node is well suited for analog design, and a 
number of silicon-proven analog circuits are avail-
able from the foundry. The addition of analog to 
digital converters (ADCs), digital to analog convert-
ers (DACs), comparators, and temperature sensors 
makes the offering of a small embedded processor 
appealing. For the processor architecture, we chose 
the RISC-V ISA because there is a growing body of 
open-source designs available for use. Although typ-
ically designed for FPGAs, they are easily adapted to 
an ASIC design.

We chose the PicoRV32 [7] core, written by 
Claire Wolf, due to its popularity and proven ver-
ification using FPGAs. The implementation is 
well-parameterized, with options for a number of 
RISC-V features such as a hardware multiplier, barrel 
shifter, and compressed instruction set. With most 

Figure 1. QFlow.
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options selected, the size of the processor core 
(including registers but excluding SRAM) is around 
15k gates, well within the range of Qflow’s placement 
and routing tools to handle. The primary design work 
on the Raven chip consisted of moving the memory 
array out of the core Verilog module, allowing use of 
an SRAM circuit provided by the foundry through use 
of an online memory compiler. We made selections 
from available analog and digital circuits and mem-
ory-mapped them to the processor core. We chose 
not to use a bus architecture for this design, mainly 
for simplicity and a faster time to tape-out. We used 
Qflow to synthesize the PicoRV32 core and a house-
keeping SPI slave used to query and control signals 
related to power and clocking, mainly as a risk-miti-
gation measure, synthesized with 3.3 V-tolerant logic 
so that it could be outside of the core 1.8 V-voltage 
domain. Some additional tasks were to make the 
crystal oscillator and voltage regulator compatible 
with the six-metal back-end stack (selected because 
of its support in X-FAB multiproject wafer runs), and 
support 3.3-V domain circuits with padframe spac-
ers and fast level shifters. To verify the design, we 
created “real-valued” verilog modules for the analog 

components and simulated the chip and environs 
[external SPI flash chip for program storage, and 
universal asynchronous receiver/transmitter (UART) 
for communications] using iverilog, the popular and 
capable open-source verilog simulation tool devel-
oped by Stephen Williams [8]. We leveraged the 
RISC-V community’s work in creating a GNU gcc 
compiler toolchain for the RISC-V architecture, cre-
ating a suite of testbench programs written in C and 
compiled to machine code files which are “loaded” 
onto the SPI flash chip emulation model during sim-
ulation. The suite of verification tests exercise the 
various analog circuits, digital general purpose digi-
tal input/output (GPIO), SRAM memory access, and 
all other major system components.

Qflow does not have a floorplanner and its 
router is not configured for top-level routing. Floor-
planning consisted mostly of determining how the 
analog blocks would be best arranged around the 
digital core, with ample room for power routing, 
then applying pin position constraints on the core 
and resynthesizing. The chip top level was routed by 
hand using the Magic layout editor, a task that took 
about three days of work. Magic was used to verify 
the layout for DRC and LVS, with final verification 
done by the foundry during tape-in. The only design 
checks not caught by Magic were antenna viola-
tions; these checks have since been added both to 
Qrouter and to Magic.

We submitted the Raven chip for fabrication in 
August 2019 and received samples in December. 
We had the device packaged and designed a test 
circuit board, and had verified working silicon by 
the end of January. The overall design time was 
long due to the concurrent development of EDA 
tools and the efabless platform, but the entire 
design cycle from concept to working silicon was 
less than a year. The Raven SoC and its test benches 
including those that use software programming are 
published on Github (https://github.com/efabless/
raven-picorv32).

CloudV SoC workflow
While Qflow suffices to generate layout of single dig-

ital blocks up to the complexity of a small processor, it 
does not handle high-level system descriptions. A num-
ber of tools are being developed for that purpose. Since 
they generate standard verilog code from a high-level 
description, they are not on the roadmap of Qflow devel-
opment. To introduce high-level system descriptions to 

 
Table 1. Design flow evolution.
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the flow, we made use of CloudV [9], a software sys-
tem developed by one of the authors (Shalan) which 
introduces templates for selecting and assembling the 
components of an SoC architecture, and a GUI-based 
front-end for the SoC design process. In the CloudV 
flow, Qflow was retained for the back-end design with 
the corresponding manual labor for floorplanning and  
top-level routing.

As shown in Figure 2, the SoC design workflow 
in CloudV provides means for hardware IP design-
ers, software developers, SoC architects, and SoC 
verification engineers to collaborate on a new 
design. The CloudV web-based IDE can be used to 
capture, simulate, and verify RTL designs in verilog 
HDL. After synthesis and mapping to a standard cell 
library, CloudV reports estimates of the layout area, 
clock speed, and power. The verified design can be 
packaged and placed in a common repository to be 
used by the SoC editor.

The SoC editor is a rule-based editor that enables 
SoC architects to design an SoC around a specific 
CPU and bus architecture (currently supporting the 
ARM Cortex M0 CPU and AMBA busses) using a 
library of open-source and proprietary IPs, as well 
as IPs created by designers collaborating on the 
project. The supported AMBA busses are AHB-Lite, 
AXI4-Lite, and APB. The architect need not worry 
about the details of how the IPs are wired as it is 
handled “behind the scenes” by the SoC editor. 
The architect may configure the SoC components 
if applicable; for example, the base address of each 
peripheral, the peripheral interrupt request line 
(IRQ) number(s), etc. Once the SoC design is com-
pleted, the SoC editor generates a set of outputs 
that help hardware and software development.

• The top-level verilog net list needed for simula-
tion and SoC assembly.

• Intermediate files to communicate with other 
CloudV modules (e.g., memory map, linker script, 
and device driver configuration).

The SoC compiler converts the captured SoC 
architecture into HDL files need for implementation 
as well as C language header files and device driv-
ers for the selected peripherals. Also, it generates 
startup code and the make file and linker scripts 
needed for software development. Using CloudV 
IDE, the software engineer can develop firmware for 
the designed SoC using the GNU C/C++ tool chain. 

Finally, CloudV simulates the SoC running the com-
piled firmware, automating the validation step.

Raptor microcontroller
We created the Raptor microcontroller as a ref-

erence design for the SoC flow using CloudV. Also, 
we wanted to demonstrate the implementation of 
a closed-source core (the ARM Cortex M0) within 
a larger open-source digital design, using a bus 
architecture to bridge the two. We contracted a 
third-party design house to synthesize, place, and 
route the M0 processor using a commercial tool 
flow. We then created CloudV templates for use 
with the M0 core and bus architecture, describing 
a number of blocks in a mixedmode architecture 
similar to the Raven chip. The templates comprised 
both purely digital subcircuits such as SPI and I2C 
bus masters, and timer/counter circuits; and mixed 
mode circuits with bus interfaces to the analog cir-
cuit blocks (ADC, DAC, comparator, etc.) provided 
by the foundry. The SoC compiler then generated a 
verilog netlist for the core digital design, including 
bus interfaces, and a verilog netlist describing the 
chip top level, including both digital and analog 
components, and the entire padframe. CloudV val-
idated the design with system-level simulation of a 
full software test suite.

We used a new GUI python script to do floor-
planning. Although this method lacks automated 
optimization, we could position and orient the 
padframe pad cells and core cells, and generate 
the (unrouted) top level layout automatically. 

Figure 2. SoC flow.
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We trained a third-party partner design house in the 
use of Magic, and they were able to complete the 
top-level signal and power routing in the span of 
approximately one week.

The Raptor chip (Figure 3b) was part of an 
aggressive design schedule to get three microcon-
troller designs onto a dedicated wafer run on the 
X-Fab XH018 process. This gave us less time than 

the Raven chip for the entire design flow, which 
again included both flow development (as the SoC 
generator and templates were developed concur-
rently) and chip design. The designs taped out in 
September 2019 and returned from fabrication in 
December. We had all three microcontrollers pack-
aged, assembled on demonstration boards, and 
tested by the end of January. All were successful, 
although the most important success was the Rap-
tor chip with the new design flow.

OpenLane flow
Throughout the design phase of the Raven and 

Raptor chips, we were aware of the development of 
a new set of open-source tools called OpenROAD 
with the capacity to perform synthesis, placement, 
and routing on designs orders of magnitude larger 
than the small embedded processors we had built 
with Qflow. As the OpenROAD developers began 
releasing tools to the public, we began investigating 
how to integrate them onto our platform. One of the 
authors (Shalan) created a separate flow that is an 
amalgam of OpenROAD and Qflow tools, which we 
call “OpenLane” (Figure 4).

It is essentially a wrapper around OpenROAD 
tools with integration into the efabless file struc-
tures for projects and foundry processes. Because 
the OpenROAD project targets very high-end 
foundry nodes, it was critical to ensure that we 
could use the same tools with the mature processes 
(mainly 0.18 and 0.13 µm) we had available on the 
efabless platform.

The OpenLane flow eliminates most of the man-
ual labor on the flow back-end required with Qflow. 
OpenLane makes use of the efabless floorplan-
ning script, makes use of the STA, placement, and Figure 4. OpenLane design flow.

Figure 3. Open-source SoC designs using open-source EDA tools. (a) Raven SoC. 
(b) Raptor SoC. (c) StriVe SoC.
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routing in OpenROAD, and includes automated 
design space exploration. Because the stated pur-
pose of the OpenROAD project is under-24-hour, no- 
human-in-the-loop end-to-end design, the Open-
Lane derivative will be the most advanced and 
automated flow to date.

StriVe microcontroller
We are currently in progress making a reference 

design called “StriVe” (Figure 3c), another RISC-V 
architecture, to demonstrate the capabilities of the 
OpenLane flow. StriVe itself is not (yet) a fixed defi-
nition architecture, but is expected to evolve as we 
develop and refine the flow.

While the concurrent development will neces-
sarily cause a long design cycle, the promise of the 
OpenROAD tools is that eventually the design cycle 
using this flow can be made much shorter than any 
open-source EDA flow has ever achieved to date. 
In addition to exercising the OpenLane flow, we 
are collaborating with other groups to be able to 
have the most open-source hardware ASIC design 
ever created. This includes replacing the proprie-
tary foundry SRAM with open-source SRAM circuits 
created using the OpenRAM tool [10]; and open-
source analog circuit designs in collaboration with 
the company Blue Cheetah, developing software 
and hardware around the Berkeley analog generator 
(BAG) system [11]. Ultimately, our goal is to have a 
design that can be open-sourced completely end to 
end, from the verilog source code and SoC templates 
to the GDS format layout data. We fully expect the 
StriVe microcontroller to revolutionize the concept 
of open hardware.

Design flow future improvements
It is clear that the open-source EDA tools do not 

have a one-to-one coverage of every design step in 
the modern design methodologies (Table 1). While 
we continue to collaborate with the community to 
extend the coverage of the open-source EDA point 
tools, we diligently apply design best practices and 
precharacterized rule of thumb.

Design for test
DFT support is under development. Func-

tionality to support scan chain insertion will be 
added is under development. Automatic test pat-
tern generation (ATPG) functionality will lever-
age existing open-source tools. We are currently 

evaluating fault [12] as a potential open-source 
DFT solution.

Formal verification
By constraining the target application to embed-

ded industrially capable microcontroller, the design 
performance and gate count we can reasonably per-
form RTLvs-Gate-level verification by simulation with 
sufficient test bench coverage.

Dynamic IR drop and signal integrity
Based on the constrained scope of the design 

and target application, which may vary depending 
on the choice of target performance metrics such 
as clock frequencies <100 MHz, and relatively low 
interconnect resistance for the 130/180 nm pro-
cess nodes, best practices for power grid design 
and decoupling capacitor placement are applied 
along with sufficient timing margins to ensure 
design closure.

We aimed tO prove that any skepticism around the 
use of open-source EDA tools and flows to generate 
custom ASIC designs is misplaced. We have success-
fully designed, manufactured, and tested multiple 
SoC microprocessor reference designs and have 
a track record of proven first time-working silicon 
using end-to-end open-source EDA flows. The EDA 
tool development community is alive and growing, 
and we have been able to leverage new tools and 
methods as they have become available, incorpo-
rating them into existing flows with a flexibility that 
commercial tools are not capable of. Every gener-
ation of our flows and designs has cut the time to 
tape-out roughly in half. With the newest generation 
of open-source EDA tools, we fully expect a design 
flow that is competitive with any commercial flow, 
but better able to leverage community input and 
involvement. We firmly believe that open-source is 
the future of ASIC design. 
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Editor’s notes:
An open-source DFT flow is essential for any open-source solution. This 
article describes an approach to fill in this missing piece.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 However foolproof current EDA tools 
happen to be, fabricated circuits may not function 
correctly because the manufacturing process itself is 
imperfect. Defects, such as short circuits and open cir-
cuits, may be introduced because of these imperfec-
tions. Therefore, manufactured circuits are typically 
tested against defects before packaging, as it is crucial 
to identify faulty circuits as early as possible; when the 
faulty chip is soldered on a printed circuit board, the 
cost of fault remedy would be multiplied by ten. This 
cost factor continues to apply at every step until the 
system that uses the chip is delivered to the end user, 
referred to in the industry as “the rule of ten.”

Regardless the wide variety of proprietary and 
commercial design-for-testability (DFT) toolchains 
available, there is a surprising dearth of open-source 
DFT toolchains. There are some freely available tools 
with limited utility, such as the Atalanta [1] automatic 
test pattern generator, which, even then, is not open 
source as it has a number of usage restrictions. In 
addition to the source code being freely customizable 
for research purposes, the reality is that the primary 

Fault: Open-Source 
EDA’s Missing DFT 
Toolchain
Manar Abdelatty, Mohamed Gaber, and 
 Mohamed Shalan
The American University in Cairo (AUC)

purpose of open-source 
software is to not only 
break down the barriers 
of entry to EDA develop-
ment but also provide a 
publicly available tool for 
research and study. Also, 
while the proprietary tools 

are typically available at a nominal cost to educa-
tional institutions, in the industry, they command out-
rageous, cost-prohibitive prices to startups; erecting 
barriers in the EDA space and inhibiting innovation 
in the field. Fortunately, the barrier to fabricating the 
actual chips is slowly being broken down by projects 
like OpenROAD and Google Open-Process Design Kit 
(PDK), which necessitates the existence of an open-
source automated flow for DFT.

Testing of digital logic circuits involves the appli-
cation of test data (test pattern/vector) to the device 
under-test (DUT) and the comparison of the result-
ing response to an expected one as produced by 
a known-good model [the golden model (GM)]. 
Should a manufacturing defect be able to alter the 
behavior of a circuit, a discrepancy would appear 
between the DUT and the GM, which allows for the 
DUT to be quickly pointed out as a defective chip. 
At the core of this process is what is known as test 
pattern generation, which aims to find a set of input 
sequences that would be able to detect faulty circuits.

Test pattern generation is a complex process with 
two primary aspects to optimize: 1) the cost of test 
application (proportional to the testing time) and 
2) the quality of the tests (coverage). In essence, 
automatic test pattern generation (ATPG) software is 

Digital Object Identifier 10.1109/MDAT.2021.3051850
Date of publication: 14 January 2021; date of current version:  
8 April 2021.
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designed to minimize the number of generated test 
vectors (TVs) (and therefore, lessen the amount of 
time spent in testing) while maximizing the number 
of covered fault sites to ensure that in that testing, as 
many defects as possible are covered. A less impor-
tant but still significant nonrecurring engineering 
cost is the time spent on generating the ATPGs: for 
larger, more complex circuits especially with mil-
lions, if not billions of fault sites, the ATPGs should 
also aim to minimize the amount of time taken to 
generate the TV set.

DFT tools also typically include the infrastruc-
ture required for a circuit to support such testing: 
because the many possible issues that may arise 
during the fabrication of a hardware design require 
almost any hardware written to be designed with 
testability in mind. To this extent, standards have 
been introduced to assist with automated testing, 
most famously IEEE 1149.1 [2], which is commonly 
known as Joint Test Access Group (JTAG).

The EDA research team at the American University 
in Cairo has thus endeavored to create such a tool: 
one that leverages existing open-source tools such as 
the Yosys Open SYnthesis Suite [3], the Icarus Ver-
ilog simulator [4], and the Pyverilog [5] to deliver 
a cohesive experience encompassing netlist cutting, 
ATPG, static compaction all the way to scan chain 
insertion, JTAG interface stitching, and verification. 
We succinctly call this toolchain “Fault.” Fault is 
designed and implemented to support standard EDA 
formats; hence, it can be integrated into any indus-
trial RTL to graphic design system II (GDSII) flow.

Design-for-testing overview

Fault models
Because of the diversity of VLSI defects, it is dif-

ficult to generate tests for real defects. Fault models 
are necessary for generating and evaluating a set of 
TVs. Fault modeling is a process by which possible 
fault sites can be represented and simulated behav-
iorally, regardless the actual cause. Also, it should 
be computationally efficient in terms of fault simula-
tion and test pattern generation. Many fault models 
have been proposed, but, unfortunately, no single 
fault model accurately reflects the behavior of all 
possible defects that can occur. However, the single 
stuck-at fault model is widely used and considered 
the de facto standard fault model as it has been used 
successfully for decades.

Stuck-at-faults
A stuck-at fault affects the state of logic signals on 

connections in a logic circuit, including primary inputs 
(PIs), primary outputs (POs), internal gate inputs and 
outputs, fanout stems (sources), and fanout branches. 
We refer to them as fault sites. Generally, the number 
of fault sites is equal to the sum of number of PIs, the 
number of gates, and the number of fanout branches. 
A stuck-at fault transforms the correct value on the 
faulty signal line to appear to be stuck at a constant 
logic value, either a logic 0 or a logic 1, referred to as 
stuck-at-0 (SA0) or stuck-at-1 (SA1), respectively.

Delay faults
A delay fault is described as a fault that is not 

inherently structural, rather, it is a fault that prevents 
the device from operating at the desire clock speed. 
While chips with structural imperfections are obvi-
ously undesirable, chips that cannot run at the spec-
ified clocking requirements are also functionally 
useless, that is, outside of a limited class of gener-
al-purpose computing hardware that does not need 
determinism, making stuck-at faults not completely 
sufficient for circuit testing. Of particular interest is 
the so-called transition fault model, which is easy to 
implement by modifying stuck-at ATPG software [6].

Combinatorial equivalence
As the vast majority of VLSI circuits are sequential, the 

stuck-at faults are, by nature, limited as a register would 
typically lie between an input and an output, making it 
so a stuck-at fault would typically not propagate from an 
input to output, therefore, making tests useless. There-
fore, a method must be utilized to somehow bypass the 
registers for the purposes of TV generation and testing. 
There are two methods used: one while generating TVs, 
which is register cutting, and another for fabricating the 
actual chip, which is the use of a scan chain.

Cutting
“Cutting” the circuit refers to the act of replacing 

every D-flipflop with an input and an output so they 
can be easily accessed while generating test pat-
terns. As shown in Figure 1, each flip-flop’s output 
becomes an input for the rest of the circuit and each 
flip-flop’s input becomes an output for the rest of the 
circuit. In that manner, it is possible to test all inter 
register logic by manipulating the register outputs 
as desired and evaluating the register inputs along-
side testing regular inputs and outputs. The circuit 



47March/April 2021

generated by this process is ephemeral; however, it is 
only used for pattern generation and then discarded.

Scan chain generation
To utilize these test patterns, which also include the 

registers with actual circuits, the circuits must include 
some manner of infrastructure to allow the manipula-
tion of register values: both writing the “inputs” and 
reading the “outputs.” This is typically approached 
by connecting all the registers in a circuit in a process 
known as scan chain stitching, where every register 
is serially connected to another register in the circuit 
forming a full serial chain. A test-mode pin is usually 
added to multiplex between the regular interregister 
logic and scan chain logic. The scan chain is self-ver-
ifying: simply scanning a pattern in and out fully is 
sufficient to ensure that not only the scan chain is func-
tional but also ensure that all registers in the circuit are 
functional as well: failing to scan a pattern in and out 
is in itself a quick way to realize that a circuit is faulty.

Automatic test pattern generation 
Test generation is the task of producing an effec-

tive set of TVs that will achieve high fault coverage 
for a specified fault model. In general, ATPG tools 
differ by the used fault model and the approach or 
algorithm used for the TVs generation approach.

The other key characteristic of ATPG is the 
method used to generate the TVs. Random test gen-
eration (RTG) is the simplest method for generating 
TVs. TVs are randomly generated and fault-simulated 
(simulated in the presence of faults) till a reasonable 
high fault coverage by the TVs is achieved.

There are also a number of ATPG algorithmic 
 methods that are in wide use today, including the 
D-algorithm, the path-oriented decision making 
(PODEM), and the fan-out oriented algorithm (FAN) 
[7]. Pattern generation through any of these algo-
rithmic methods requires what is known as path 
sensitization; which refers to fault activation and 
propagation by finding a path in the circuit that will 
allow a fault to show up and propagate to an observ-
able output of the circuit if it is faulty.

For the example circuit shown in Figure 2, 
the ATPG process identifies eight fault sites {A, B, 
C, d, e, f, g, Y}, and 16 stuck-at faults. To simulate 
stuck-at faults, the ATPG constructs a faulty model 
for each generated TV by forcing each fault site to 
be stuck-at zero and stuck-at one. Then, the output 
of the faulty model is compared to the GM output 

and discrepancies mark a fault as detectable by 
the applied TV. For example, applying the input 
sequence {1,0,1}, while forcing node e to be stuck-at 
one, would produce an incorrect circuit result which 
means e’s stuck-at one fault is detectable by the 
applied TV. However, forcing e to be stuck-at zero 
would result in a correct circuit output meaning that 
e’s stuck at zero fault is not detectable by the applied 
vector. This process is repeated for all sites, for each 
generated vector, and then coverage is computed.

Figure 1. Converting a sequential circuit 
to a combinational circuit by “cutting.” 
The inputs are marked in red and outputs 
are in blue.

Figure 2. ATPG example. The fault sites 
are lettered.
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Fault toolchain
Fault operates on synthesized netlists in Verilog and 

is made up of five components: Cut, PGen, Compact, 
Chain, and Tap. Figure 3 shows the typical design flow 
of Fault. First, the flattened netlist is converted into a 
pure combinational design using Cut. This modified 
netlist is used for the ATPG process done by PGen 
which outputs the final coverage and the generated 
TVs in a javascript object notation (JSON) format. The 
generated TV set is then compacted by Compact that 
reduces the number of the generated TVs without 
affecting the coverage. Finally, scan chain insertion is 
done by Chain and a JTAG controller is stitched to the 
inserted scan chain by Tap.

Cut
Using Pyverilog [5], the flattened netlist flip-flops are 

removed converting the sequential design into a pure 
combinational design. The new netlist has an extra 
input port for every removed flip-flop output pin and an 
extra output port for every removed flip-flop input pin.

PGen
PGen is used to perform ATPG for stuck-at faults. 

The stuck-at fault model assumes that manufacturing 
defects cause nodes to be stuck at logic zero or logic 
one. PGen uses pseudorandom ATPG coupled with 
fault simulation. This is a simpler alternative to algo-
rithmic methods such as PODEM and D algorithms. 
Algorithmic methods require “path sensitization,” 
which makes them complex to handle netlists mapped 
using any arbitrary standard cell library. In PGen, TVs 
are pseudorandomly generated then simulated. PGen 

generates a testbench, for every generated TV, that 
compares a GM to a model where fault sites are pro-
gressively injected using Verilog force statements. The 
outputs of both models are compared, and any fault 
site that can be marked as detectable using said TV 
is sent back to Fault to be marked as covered. PGen 
stops generating TVs when either the target coverage 
or the maximum number of TVs has been reached. 
Final coverage is then output to a file in a ubiquitous 
and easy to manipulate JSON format.

Compact
Reduces the size of the TV set using static compac-

tion while maintaining the coverage percentage of the 
initial test set. The compaction is needed to reduce 
the testing time; hence, reducing the cost. The com-
paction process is illustrated in Algorithm 1. It starts 
with two sets: the initial TV set, generated by the ATPG, 
along with its covered faults and an empty compacted 
TV set. First, essential TVs (i.e., ones that cover at least 
one fault not covered by any other TV in the set) are 
added to the compacted set unadulterated, while the 
initial test set has the essential fault points removed. 
Then, the TV with the highest number of detectable 
faults is inserted in the compacted set and the faults 
covered by that vector are removed from the initial 
test set. This process is repeated until the compacted 
set covers all previously detected faults.

Chain
Performs scan chain insertion. Chain converts 

a netlist’s flip-flop cells to scan cells by adding an 
abstract multiplexer definition to every flip-flop 
input port using Pyverilog [5]. This definition is then 
mapped by Yosys [3] to either a multiplexer (MUX) 
cell from the standard cell library or a scannable 

Figure 3. Fault design flow.

Algorithm 1: Static TV Compaction.
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flip-flop cell if the library has one. The chain also 
adds boundary scan cells for the netlist’s inputs and 
outputs, then stitches all the scan cells into one scan 
chain. The chained netlist has extra ports for the seri-
al-in and serial-out of the constructed scan chain in 
addition to the testing control signals. Additionally, 
Chain offers an option to automatically generate a 
testbench to verify the scan chain integrity.

Tap
Tap adds the JTAG interface to a chained netlist 

using Pyverilog. This is accomplished by adding its 
five namesake test access ports (TAPs): serial test 
data in (TDI), test mode select (TMS), serial test data 
out (TDO), test clock (TCK), and active low test reset 
(TRST). As illustrated in Figure 4 the serial-in and 
serial-out of the constructed scan chain are stitched 
to the TDI line and the input of the TDO line multi-
plexer respectively. Selecting a register between TDI 
and TDO lines is done by shifting an instruction code 
on the TDI line. For the purpose of doing on-chip 
testing, a custom instruction is defined to select the 
internal scan chain. The TAP controller is verified by 
automatically generating a testbench wherein TVs 
are shifted through the scan chain, then applied to 
the onchip logic by deasserting shift for one clock 
cycle, then the captured output is shifted out and 
compared to the fault-free response.

Implementation
The fault is implemented in the Swift programming 

language [8] as it is a statically typed, safe, native 
programming language that could also interact with 
and use Python-based libraries idiomatically.

Fault leverages the Swift–Python interoperability 
developed by Google Inc. as part of their Swift for 
Tensorflow project [9], allowing it to interface seam-
lessly with the Pyverilog library which produces an 
abstract syntax tree for direct manipulation, neces-
sary for the cutting behavior, scan chain stitching, 
and other things. Most logic is implemented in pure. 
Swift, which, while compiled Python yields a negligi-
ble speed boost, the native programming language 
is more lenient on memory usage, which is a great 
boon when simulating large hardware designs.

Interfacing with Yosys and Icarus Verilog is done 
via simple calls to the UNIX shell: Fault would generate 
the synthesis script or testbench, respectively, call the 
tool responsible and parses its output, which may be 
written to either a pipe or a file, which is then read by 

Fault. The fault runs many simulations in parallel and 
benefits greatly from a multithreaded environment.

Despite that, however, a practical problem is 
that setting up the Swift language, let alone Swift/
Python interop, is cumbersome on Linux, which is 
a great concern considering cloud infrastructure 
overwhelmingly runs Linux—not to mention that 
the problem becomes greater while distributing for 
users as Windows support for Swift is immature and 
Apple does not yet provide official binaries for the 
language on Windows. To help alleviate these prob-
lems, lightweight Docker images were created so 
one may run Fault on any platform of their choice in 
a reliable, relatively configuration-free setting.

Benchmarking and performance
We have evaluated the performance of Fault’s 

flow on a number of open-source designs frequently 
used as benchmarks. The coverage and runtime 
are used as metrics for the ATPG process. Coverage 
results were obtained by running the ATPG pro-
cess with a ceiling of 5000 TVs, an increment of ten 
TVs per iteration, and minimum coverage of 97% 
such that the ATPG process stops when the ceiling 
count is encountered or the minimum coverage is 
achieved. As shown in Figure 5a, the fault is able 
to achieve 96.6% coverage on average. As shown 
in Figure 5b, Fault’s runtime is moderately low for 
smaller designs, but it is significantly higher for larger 
designs. This is largely attributed to the ATPG prob-
lem being NP-complete [10] thus needing to gener-
ate a larger TV set to reach a reasonable coverage; 

Figure 4. JTAG controller connection to a chained 
netlist.
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hence, more Iverilog simulations. The fault simula-
tions were carried out on Intel Xeon-based station 
running Ubuntu 18.04 long-term support (LTS) with 
Fault’s native installation with an allocated RAM of 
32 GB and ten threads.

Additionally, we experimented with Atalanta to 
validate Fault’s stuck-at simulator. The experiment 
involved generating the TVs with Atalanta, then sim-
ulating the generated vectors using Fault’s stuck-at 
simulator. Since Atalanta does not support standard 
EDA formats and is only compatible with a netlist in 
the International Symposium of Circuits and Systems 
(ISCAS) bench format, we introduced an optional 
utility to Fault’s flow, bench, that takes a gate-level 
netlist and the standard cell library Verilog models 
as an input and generates the netlist in bench format. 
This netlist was then used as an input to Atalanta. 
Figure 5c shows the coverage results for Fault’s sim-
ulator and Atalanta. Fault’s coverage is slightly lower 
than Atalanta; however, Fault shows an accurate cov-
erage percentage of the gate-level netlist because the 
bench circuit format does not support some circuit 
constructs such as being permanently grounded.

For the compaction process, the metric used is 
the size of the initial TV set versus the compacted set. 
As shown in Figure 5d, Fault is able to significantly 
reduce large TV sets (5000) with a reduction percent 

of 97.2% on average. For smaller sets, the reduction 
percentage is lower because most of the generated 
TVs are essential. The compaction process was also 
verified by rerunning the fault simulations with the 
compacted set to ensure that the coverage percent-
age is not reduced.

For the scan chain insertion and JTAG controller 
stitching, the area overhead is calculated to evaluate 
the penalty of DFT. As shown in Figure 5e, for smaller 
designs, the area overhead is quite large (i.e., >90%) 
rendering it unnecessary, however, for larger designs, 
the cost of adding extra testability logic is insignifi-
cant making the strong case of the necessity of hav-
ing DFT structures for complex designs especially.

Using fault for ASIC tape-out
With the advent of open-source EDA movements, 

the release of Google SkyWater PDK, and openLane 
project, we are able to work on a potential tape-out 
of striVe6 chip [11], a PicoRV32 SoC with testability 
structure automatically injected by Fault. The fault 
was able to achieve a coverage percentage of 91% 
on striVe6 with 5000 TVs that were compacted to 
311 TVs and verified to have the same coverage as 
the original set. The scan chain and JTAG controller 
were automatically constructed and verified by Fault 
with an estimated area overhead of 16%.

Figure 5. Fault’s flow results. (a) Coverage versus gate count. (b) Run-time versus gate count. 
(c) Fault and Atalanta coverage versus gate count. (d) Initial TV set versus compacted set 
count. (e) Area overhead versus gate count.
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The striVe6 exercise has revealed several chal-
lenges with Fault’s flow. First of which is how to deal 
with unscannable black-box modules (like SRAM) in 
the ATPG process. This was solved by extending the 
Cut option to support removing black-box modules 
and, like flip-flop cells, exposing the blackbox mod-
ule PIs as output ports and POs as input ports; thus 
bypassing the SRAM block while testing. Additionally, 
the Chain option was extended to support bypassing 
black-box modules. This was achieved by adding a 
wrapper scan cell to the black-box PIs and POs that 
were eventually stitched to the flip-flops scan chain. 
The second challenge was having flipflops with dif-
ferent clock-edge sensitivity, which affected the scan 
chain integrity. This was solved by also extending the 
Chain option to add an inverter to the TCK supplied 
to the negative-edge triggered flip-flops.

In tHIs artIcle, we introduced Fault the first and 
only practical open-source DFT toolchain compat-
ible with HDL designs. Fault toolchain provides all 
needed utilities to generate TVs, simulate faults, 
and insert scan chains. The fault is aiming at filing 
some of the gaps in the emerging open-source EDA 
ecosystem. Also, Fault provides all the needed infra-
structure for research activities in digital application 
specific integrated circuits (ASIC) testing.

Future work includes ATPG acceleration by gener-
ating TVs algorithmically to improve the coverage as 
well as the run-time. While the pseudo-random num-
ber generator (PRNG) demonstrated the capability 
of reaching high coverage in a reasonable amount of 
time, targeted TVs may yield coverage improvement 
by covering fault sites the RNG failed to detect. Consid-
erations also include adding support for fault collaps-
ing, use of compiled HDL simulators such as Verilator 
[12]. We have plans for supporting BIST for memory 
and logic, TVs compression, and scanchain reorder-
ing. Also, we are planning to extend Fault to support 
a larger variety of fault models like the transition fault 
model and to add support for fault diagnostics to locate 
defects and improve the yield. Additionally, we plan to 
extend fault to support testability checking to detect 
DFT violations like the generated clock and combina-
tional feedback loops. Finally, we will be adding sup-
port for IEEE P1687 and IEEE 1500 standards. 

Acknowledgments
The Fault is publicly available under the Apache 

2.0 license at https://github.com/Cloud-V/Fault, 

including the benchmarks used for testing. Full instal-
lation and usage instructions are available in the 
GitHub Wiki and the Readme files. It has been tested 
to work with macOS 10.15 “Catalina” and Ubuntu 
18.04 “Bionic Beaver.” Because of the complicated 
set of dependencies required to run the toolchain, 
a Docker container based on the latter platform has 
been made available at https://hub.docker.com/r/
cloudv/fault. Fault is part of the CloudV Project at the 
American University in Cairo (AUC), an initiative to 
reshape digital design and system-on-a-chip design 
education around open-source software and cloud 
technologies.

 References
 [1] H. K. Lee and S. D. Ha, “On the generation of test 

patterns for combinational circuits,” Dept. Elect. Eng., 

Virginia Polytech. Inst., Blacksburg, VA, USA, Tech. 

Rep. 12 93, 1993.

 [2] IEEE Standard for Test Access Port and Boundary-

Scan Architecture, IEEE Standard 1149.1-2013 

(Revision of IEEE Std 1149.1-2001), 2013.

 [3] C. Wolf and J. Glaser, “Yosys—A free Verilog synthesis 

suite,” in Proc. Austrochip, 2013, pp. 1–6.

 [4] S. Williams. Icarus Verilog. Accessed: Feb. 5, 2020. 

[Online]. Available: http://iverilog.icarus.com

 [5] S. Takamaeda-Yamazaki, “Pyverilog: A Python-based 

hardware design processing toolkit for Verilog HDL,” in 

Proc. Int. Symp. Appl. Reconfig. Comput., Apr. 2015, 

pp. 451–460.
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Editor’s notes:
This article proposes a new model testing and verification methodology, 
PyH2, using property-based random testing in Python. PyH2 leverages the 
whole Python ecosystem to build test benches and models.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 As DennArD scAling is over and Moore’s law 
continues to slow down, modern system-on-chip (SoC) 
architectures have been moving toward heterogene-
ous compositions of general-purpose and specialized 
computing fabrics. This heterogeneity complicates the 
already challenging task of SoC design and verification. 
Building an open-source hardware community to amor-
tize the nonrecurring engineering effort of developing 
highly parametrized and thoroughly verified hardware 
blocks is a promising solution to the heterogeneity 
challenge. However, the widespread adoption of open-
source hardware has been obstructed by the scarcity 
of such high quality blocks. We argue that a key missing 
piece in the open-source hardware ecosystem is com-
prehensive, productive, and open-source verification 
methodologies that reduce the effort required to create 

PyH2: Using PyMTL3 to 
Create Productive and 
Open-Source Hardware 
Testing Methodologies
Shunning Jiang, Yanghui Ou, Peitian Pan, 
Kaishuo Cheng, Yixiao Zhang,  
and Christopher Batten
Cornell University

thoroughly tested hard-
ware blocks. Compared to 
closed-source hardware, 
verification of open-source 
hardware faces several sig-
nificant challenges.

First, closed-source 
hardware is usually owned 
and maintained by compa-

nies with dedicated verification teams. These verifica-
tion engineers usually have many years of experience 
in constraint-based random testing using a universal 
verification methodology (UVM) with commercial 
SystemVerilog simulators. However, open-source hard-
ware teams usually follow an agile test-driven design 
approach stemming from the open-source software 
community, where the designer is also responsible for 
creating the corresponding tests. Moreover, the steep 
learning curve, in conjunction with very limited support 
in existing open-source tools, makes the UVM-based 
approach rarely used by open-source hardware teams. 
We argue that the open-source hardware community is 
in critical need of an alternative route for testing open-
source hardware, instead of simply duplicating closed-
source hardware testing frameworks.

Second, unlike closed-source hardware’s 
development cycle where most engineers focus 
on a specific design instance for the next gen-
eration product, open-source hardware blocks 

Digital Object Identifier 10.1109/MDAT.2020.3024144
Date of publication: 14 September 2020; date of current version:  
8 April 2021.
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usually exist in the form of design generators to 
maximize reuse across the community [1]. How-
ever, design generators are significantly more 
difficult to verify than design instances due to 
the combinatorial complexity in the multidimen-
sional generator parameter space. There is a crit-
ical need to create an open-source framework 
that systematically and productively tests design 
generators and automatically simplifies both 
failing test cases and failing design instances to 
facilitate debugging.

Third, performing random testing can be dif-
ficult in important hardware domains. There has 
been a major surge in open-source RISC-V processor 
implementations. However, due to limited human 
resources, most of these implementations only 
include a few directed tests, randomly generated 
short assembly sequences, and/or very large scale 
system-level tests (e.g., booting Linux). There is a 
critical need to create an automated random testing 
framework to improve the fidelity of open-source 
processor implementations.

Fourth, many open-source hardware blocks 
are designed to improve reusability by exposing 
well-encapsulated timing-insensitive hand-shake 
interfaces that can provide an object-oriented 
view of the hardware block (e.g., a hardware reor-
der buffer exposes three object-oriented “method” 
interfaces: allocate, update, and remove). How-
ever, it is very hard to perform random testing to 
test the behavior of concurrent hardware data 
structures that have multiple interfaces accept-
ing “transactions” in the same cycle. Converting a 
random transaction sequence into cycle-by-cycle 
test vectors using traditional testing approaches 
requires a cycle-accurate golden model. Manu-
ally creating multitransaction test-vectors only 
works for directed testing. One possible solution 
is to execute only one random transaction in each 
cycle, yet the inability to stress intracycle concur-
rent behavior harms the quality of the tests. There 
is critical need to create a novel testing approach 
for object-oriented hardware using concurrent 
intracycle transactions.

To address these challenges, we introduce PyH2,1 
our vision for a productive and open-source testing 
methodology for open-source hardware, which is sig-
nificantly different from state-of-the-art closed-source 

1Python’s hypothesis for hardware.

hardware testing. Leveraging open-source software, 
PyH2 attempts to solve the open-source hardware 
testing challenge by holistically using proper-
ty-based testing (PBT) in Python to significantly 
reduce designer effort in creating high-quality tests. 
The advantage of PBT over constraint-based random 
testing is as follows.

 • PBT does not draw all of the random data before-
hand, making it possible to leverage runtime 
information to guide the random data generation.

• PBT can automatically shrink the failing test case 
to a minimal failing case once a bug is discovered.

Compared to BlueCheck [2], a prior PBT frame-
work for hardware, the key distinctions are as follows.

• PyH2 enables using a high-level behavioral speci-
fication written in Python as the reference model 
instead of requiring the reference model to be 
synthesizable.

• The random byte-stream internal representa-
tion of hypothesis provides more sophisticated 
auto-shrinking, while BlueCheck simply removes 
transactions along with ad hoc iterative deepening.

• PyH2 can auto-shrink not only the transactions 
but also the design itself by unifying the design 
parameter space and the test-case space.

We see coverage-guided mutational fuzzing 
(e.g., RFUZZ [3]) as complementary to PBT. PBT 
can be used to quickly find bugs with moderate 
complexity, while RFUZZ can be used to very 
slowly find potentially more complex bugs. Over-
all, PyH2 is able to combine the advantages of com-
plete-random testing (CRT) and iterative-deepened 
testing (IDT) to identify a failing test case quickly 
and then provide a minimal failing case to facilitate 
debugging.

PyH2 is supported by the whole Python ecosystem, 
among which three main packages form the foun-
dation of PyH2 (PyMTL3, pytest, and hypothesis). 
PyH2 users can use over 100,000 open-source Python 
libraries to build test benches and golden models. 
PyH2 leverages PyMTL3 [4], [5] to build Python test 
benches to drive register-transfer-level (RTL) sim-
ulations with PyMTL3 models and/or external Sys-
temVerilog models leveraging PyMTL3’s Verilator 
cosimulation support. PyH2 adopts pytest, a mature 
full-featured Python testing tool, to collect, organize, 
parametrize, instantiate, and refactor test cases for 
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testing open-source hardware. PyH2 also exploits 
pytest plugins to evaluate hardware-specific testing 
metrics. For example, PyH2 tracks the line coverage 
of behavioral logic blocks of PyMTL3 models during 
simulation using coverage.py, a line coverage tool for 
normal Python code. The key component of PyH2 is 
hypothesis, a PBT framework to test Python programs 
by intelligently generating random test cases and rap-
idly auto-shrinking failing test cases.

PyH2 is realized by a collection of PyH2 frame-
works which are discussed in depth in the rest of this 
article: PyH2G (PyH2 for RTL design generators), 
PyH2P (PyH2 for processors), and PyH2O (PyH2 for 
object-oriented hardware).

Background
This section briefly introduces PyMTL3, pytest, 

and hypothesis, the three key Python libraries that 
form the foundation of PyH2.

PyMTL3
PyMTL3 is an open-source Python-based hard-

ware modeling, generation, simulation, and ver-
ification framework. PyMTL3 supports multilevel 
modeling for RTL, cycle-level, and functional-level 
models. To provide productive, flexible, and exten-
sible workflows, PyMTL3 is designed to be strictly 
modular. Specifically, PyMTL3 separates the PyMTL3 
embedded domain-specific language that constructs 
PyMTL3 models, the PyMTL3 in-memory intermedi-
ate representation (IMIR) that systematically stores 
hardware models and exposes APIs to query/mutate 
the elaborated model, and PyMTL3 passes that are 
well-organized programs to analyze, instrument, and 
transform the PyMTL3 IMIR.

PyMTL3 aims at creating an evolving ecosystem 
with its modern software architecture and high inter-
operability with other open-source tools. PyMTL3 
emphasizes performing simulation in the Python runt-
ime and automatic Verilator black-box import for 
cosimulation. Driving the simulation from Python test 
benches to test both PyMTL3 designs and external Sys-
temVerilog modules enables PyMTL3 to combine the 
familiarity of Verilog/SystemVerilog with the produc-
tivity features of Python. Tools that take the opposite 
approach (e.g., cocotb) embed Python in a Verilog 
simulator and drive the simulation from the Verilog 
runtime, but this complicates the ability to leverage 
the full power of Python. RTL designs built in PyMTL3 
can be translated to SystemVerilog accepted by 

commercial EDA tools, or Yosys-compatible Verilog 
accepted by OpenROAD, a state-of-the-art open-
source EDA flow [6].

PyTest
pytest is a mature full-featured tool for testing 

Python programs. Using pytest, the programmer 
can create small tests with little effort and also 
parametrize numerous complex tests with compo-
sitions of pytest decorators succinctly as shown 
in Figure 1a. pytest also provides lightweight com-
mand line options to print out different kinds of error 
messages varying from a list of characters indicating 

Figure 1. Background on testing 
methodologies. (a) Parametrizing 
directed tests using a pytest decorator. 
(b) Comparison of different testing 
techniques. (c) Code for testing a greatest 
common divisor function using CRT, IDT, 
and PBT.
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whether each test fails, to per-test full stack traces. 
pytest has hundreds of plugins, such as pytest-cov 
that leverages coverage.py to track line coverage.

CRT, IDT, and hypothesis PBT
Traditional testing methodologies usually use a 

mix of CRT and IDT. As shown in Figure 1b, CRT can 
detect errors quickly because it randomly samples 
the input space, but can produce very complicated 
failing test cases which are difficult to debug. IDT 
finds bugs more slowly because it gradually samples 
the input space, but can produce simple counterex-
amples. PBT, first popularized by QuickCheck [7], is 
a high-level, black-box testing technique where one 
only defines properties of the program under test and 
uses search strategies to create randomized inputs. 
The original QuickCheck paper also discussed the 
integration with Lava [8] to test circuits. Properties 
are essentially partial specifications of the program 
under test and are more compact and easier to write 
and understand than full system specifications. Users 
can make full use of the host language when writ-
ing properties and thus can accurately describe the 
intended behavior. Most PBT tools support shrink-
ing, a mechanism to simplify failing test cases into 
a minimal reproducible counterexample. With these 
features, PBT can achieve the benefits of both CRT 
and IDT.

Hypothesis [9] is a state-of-the-art Python PBT 
library that includes built-in search strategies for differ-
ent data types and supports integrated auto-shrinking 
of failing test cases. All hypothesis strategies are built 
on top of a unified random byte-stream representa-
tion, and each strategy internally repurposes random 
bytes to produce the target random value. Search 
strategies in hypothesis are integrated with methods 
that describe how to simplify certain types of data, 
which makes shrinking effective. Users can compose 
built-in search strategies for any user-defined data 
type and shrinking will work out-of-the-box.

Complicated stateful systems can also be tested 
with RuleBasedStateMachine in hypothesis. The 
user inherits from the RuleBasedStateMachine 
class to add variables, a prologue, and an epilogue 
to create a new test class. The user needs to define 
rules and their preconditions and invariants, which 
describes conditional state transitions. For stateful 
testing, usually the user creates Python assertions 
inside the rule to compare against a golden refer-
ence model. Hypothesis repeatedly instantatiates 

the test class and executes a sequence of rules on 
the state machine.

Figure 1c shows examples of testing the great-
est common divisor function using CRT, IDT, and 
hypothesis PBT against math.gcd. The CRT test 
(lines 16–20) includes 100 random samples. The IDT 
test (lines 22–25) iteratively tries all possible values 
for a and b from 1 to 128. We use the @hypothesis.
given decorator to transform a normal function 
test_property_based that accepts arguments, into 
a randomized PBT test. Consider a bug where line 3 
in Figure 1a is changed to while b > 10. CRT can 
find the bug quickly, but the failing test case involves 
relatively large numbers. IDT finds the bug in exactly 
11 test cases [i.e., gcd(1,11)]. PBT can find the bug 
quickly with large numbers, but then auto-shrink the 
inputs to a minimal counterexample [i.e., gcd(2,1)].

PyH2G: PyH2 for RTL design 
generators

PyH2G is a PyH2 framework to productively and 
effectively test RTL design generators. We envision 
that future open-source SoC designs are heavily based 
on chip generators which are composed of numerous 
highly parametrized RTL design generators. Unfor-
tunately, verifying design generators is significantly 
more challenging than verifying design instances due 
to the combinatorial explosion in the multidimen-
sional generator parameter space. Traditional testing 
techniques such as CRT and IDT face new challenges 
when testing design generators. CRT can find a bug 
quickly with a few test cases but often leads to a com-
plicated failing test case with numerous transactions 
and a complex design, which makes it more difficult 
to debug. IDT can produce a simple failing case with 
a small design instance, but may take a very long 
time to detect the error due to the iterative deepening 
required for the generator parameters.

In response to these challenges, PyH2G uses PBT 
to obtain the benefits of both CRT and IDT. Specifi-
cally, PyH2G creates composite search strategies in 
hypothesis to interpret part of the generated random 
byte stream as the design parameters and the rest 
as the test case (see lines 3–4 of Figure 2a). Unify-
ing the design parameter space and the test case 
space allows hypothesis to simultaneously shrink 
the design parameters (i.e., reducing the complexity 
of the generated design instance), the length of the 
input transaction sequence, and the complexity of 
each transaction to a minimal failing test case.
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Case study: on-chip network generator
We quantitatively evaluated CRT, IDT, and 

PyH2G using the PyOCN [10] ring network gen-
erator against four real-world bugs. PyOCN is a 
multitopology, modular, and highly parametrized 
on-chip network generator built in PyMTL3. 
Figure 2a illustrates an example of a PyH2G test 
that uses search strategies to configure the ring 
network and generate the test packets. When a test 
case fails, hypothesis can simultaneously shrink the 
design instance and the packet sequence. We ran 

50 trials for each bug, and the results are shown 
as box-and-whisker plots in Figure 2b–d. Overall, 
PyH2G detects errors quickly with a small num-
ber of test cases and produces a simple failing test 
case that has a short sequence of transactions and 
a simple design. PyH2G also significantly reduces 
the transaction complexity. PyH2G sometimes runs 
slightly more test cases than CRT because hypothe-
sis will first generate explicit examples to stress-test 
the boundary conditions before exploring values 
randomly. However, this also help PyH2G discover 
the credit bug more quickly than CRT.

PyH2P: PyH2 for processors
PyH2P is a PyH2 framework to automatically gen-

erate random assembly instruction sequences to 
test processors, which makes the case for effective 
domain-specific random testing methodologies. Differ-
ent from existing work, PyH2P is able to automatically 
shrink a failed long program to a minimal instruction 
sequence with a minimal set of architectural regis-
ters and memory addresses. It is possible to combine 
auto-shrinking with other sophisticated random pro-
gram generators [11] by carefully using PyH2P random 
strategies. PyH2P can also leverage Symbolic-QED [12] 
by applying QED transformations to generated random 
programs and performing bounded model checking to 
accelerate bug discovery.

PyH2P creates composite hypothesis strategies 
to generate random assembly programs for effec-
tive auto-shrinking. Specifically, PyH2P creates a 
hierarchy of strategies for arithmetic, memory, and 
branch instruction strategies using substrategies 
for architectural registers, memory addresses, and 
immediate values. PyH2P currently implements a 
block-based mechanism which first instantiates a 
control-flow template of branches, and then fills 
random instructions between branches. PyH2P 
ensures that each generated assembly program 
has well-defined behavior across the test and ref-
erence models. For arithmetic instructions, PyH2P 
constrains the range of the immediate value strat-
egy to avoid overflow. For memory instructions, 
PyH2P constrains the range of the memory address 
strategy to avoid unaligned and out-of-bound 
memory accesses. For branch instructions, PyH2P 
first generates a sequence of branch instruc-
tions and their corresponding labels, and then 
randomly shuffles them to form the control-flow 
template. This eliminates the possibility of branch 

Figure 2. PyOCN RingNet generator case 
study. (a) PyH2G example. (b) CRT. (c) IDT. 
(d) PyH2G.
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out-of-range errors. Additionally, a set of registers 
are dedicated to loop bounds and loop variables 
to avoid infinite loops.

Case study: PicoRV32 processor
We demonstrate the effectiveness of PyH2P using 

PicoRV32, an open-source, area-optimized RV32IMC 
processor implemented in Verilog. We leverage 
PyMTL3’s Verilator support to drive the cosimulation 
using a PyMTL3 testbench. The imported processor 
is connected to a PyMTL3 cycle-level test memory 
which stores the assembly program generated by 
PyH2P. After executing the program, we extract and 
compare the value of PicoRV32 architectural regis-
ters and the test memory against an instruction set 
simulator written in PyMTL3.

We inject five directed bugs into the Verilog code, 
and ran 50 trials for each methodology and bug com-
bination. The results are shown as box-and-whisker 
plots in Figure 3a–c. CRT generally requires a small 
number of tests (less than to discover a bug, but the 
failing cases usually include more than 50 complex 
instructions. IDT significantly reduces the number of 
instructions in the failing test case, but needs signif-
icantly more cases to find the failing case. Note that 
IDT generates instructions of similar complexity to 
CRT because we have to generate random imme-
diate values to avoid prohibitively long runtimes to 
find these bugs. PyH2P is able to discover the failing 
test case using a similar number of trials to CRT and 
can shrink it to a minimal case with similar length 
to the cases found by IDT. Moreover, PyH2P is able 
to shrink the immediate value so that the average 
instruction complexity is significantly reduced.

Figure 3d–g shows the failing cases for the mul_
carry bug discovered by each methodology. This 
bug can only be triggered by specific operands. Fig-
ure 3d is the example found by CRT with 41 instruc-
tions, seven unique architectural registers, and large 
immediate values. Figure 3e shows the example 
found by IDT which uses only one register but a large 
random immediate value. Figure 3f and g includes 
two minimal failing cases from different PyH2P trials, 
which are significantly simpler.

PyH2O: PyH2 for object-oriented  
hardware

PyH2O is a PyH2 framework that enables using 
method calls to test RTL hardware components 
with object-oriented latency-insensitive interfaces. 

The key contribution of PyH2O is a novel testing 
methodology for concurrent hardware data struc-
tures that are difficult to thoroughly test using 
traditional approaches. PyH2O proposes a novel 
simulation mechanism called auto-ticking, which 
has been implemented as a new PyMTL3 simulation 
pass. With merely “transaction-accurate” Python 
data structures as reference models, PyH2O uses the 
rule-based stateful testing features in hypothesis to 
perform a sequence of random method calls on both 

Figure 3. PicoRV32 processor case 
study. (a) CRT. (b) IDT. (c) PyH2P. (d) 
CRT example. (e) IDT example. (f) PyH2P 
example 1. (g) PyH2P example 2.
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the reference model and the auto-ticking simulator 
of the RTL model, and then checks if the outcomes 
match for each method call.

PyH2O is based on method-based interfaces 
which are decoupled handshake interfaces with 
four ports: 1) enable; 2) ready; 3) arguments; and 
4) return value. Essentially, setting the enable sig-
nal high after making sure the ready signal is high 
is equivalent to calling the corresponding ready 
method, checking if it returns true, and then call-
ing the actual method. Converting an RTL method 
interface to a Python method involves an adapter 
that provides a method and a ready method to the 
user and sets/modifies the signals inside the adapter. 
PyH2O leverages Python reflection to automatically 
wrap the RTL method interfaces with a generated 
top-level PyMTL3 wrapper with Python methods.

PyH2O applies the AutoTickSimPass to create an 
auto-ticking simulator for the wrapped model. Con-
ceptually, auto-ticking is more fine-grained than the 
classical delta cycle approach. Auto-ticking divides 
the combinational logic into multiple parts based 
on logic related to the method interfaces. When 
the user calls the enhanced top-level method, not 
only the method but also all the logic between this 
method and the next method is executed. If the exe-
cuted method is the last method of the cycle, the 
simulator advances to the first method of the next 
cycle. If the user skips a method in this cycle and 
calls another method later in the cycle or a previous 
method that is already skipped/called in the current 
cycle, the simulator ignores the in-between methods 
and executes all the logic until it reaches the called 
method. Unlike trivial one-method-per-cycle testing, 
this auto-ticking scheme is able to execute multiple 
methods in the same cycle if they are called in a 
specific order.

Case study: reorder buffer data structure
Figure 4a shows an RTL reorder buffer imple-

mentation which exposes the three methods called 
interfaces. allocate is ready if the buffer is not full. 
It returns the entry index and advances the tail 
pointer. update_ is ready if the buffer has valid ele-
ments. It takes an index/value pair to update the 
buffer. remove is ready if the buffer head is valid 
and already updated, and returns the index/value 
pair. Note that remove and allocate can occur in 
the same cycle even if the reorder buffer is full, 
because the implementation combinationally 

factors whether remove is called into allocate’s 
ready signal. Figure 4b shows the execution 
schedule generated by the AutoTickSimPass. 
The auto-ticking simulator guarantees that a 
sequence of three method calls in the order of  
update_ < remove < allocate will occur in the 
same cycle.

Figure 4. PyH2O reorder buffer case study. 
(a) PyMTL3 reorder buffer code snippet. 
(b) Auto-tick execution schedule for 
reorder buffer. (c) First falsifying example 
found by PyH2O. (d) Minimized failing case 
after auto-shrinking.
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To show the effectiveness of PyH2O, we replace 
head+1 with head+0 in line 19 of Figure 4a. This 
subtle bug needs at least six transactions in a spe-
cific order to trigger because it requires six transac-
tions to allocate, update and remove two entries, 
but must not remove the first one and allocate the 
second one in the same cycle. After trying several 
sequences with varying length from 5 to 19, PyH2O 
discovers a 11-transaction failing case as shown in 
Figure 4c. After auto-shrinking, PyH2O successfully 
finds one of the minimum failing case as shown in 
Figure 4d.

This ArTicle hAs introduced PyH2, which lev-
erages PyMTL3, pytest, and hypothesis to create a 
novel open-source hardware testing methodology. 
We believe PyH2 is an important first step toward 
addressing four key challenges in open-source hard-
ware testing as follows.

• PyH2 is more accessible to open-source hard-
ware designers compared to complex closed-
source hardware testing methodologies.

• PyH2G is well-suited for testing not just design 
instances but also design generators which are 
critical to the success of the open-source hard-
ware ecosystem.

• PyH2P can improve the random testing of open-
source processor implementations compared to 
the more limited directed and random testing 
currently used in many open-source projects.

• PyH2O can more effectively test object-oriented 
hardware data structures.

We have open-sourced PyMTL3 and PyH2 at 
https://github.com/pymtl/pymtl3. 
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Editor’s notes:
This article introduces a high-quality open-source static timing analysis 
engine that is capable of parallel incremental timing and that provides an 
efficient API to facilitate development of complex EDA tools.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 Static timing analySiS (STA) is a pivotal 
step in the overall chip design flow. It verifies the 
expected timing behaviors and prevents chips from 
malfunctioning after tape-out [1]. Of all timing 
analysis applications, incremental timing is imper-
ative for the success of timing-driven optimization 
flows, such as placement, routing, logic synthesis, 
and physical synthesis [2]. Optimization tools often 
call a timer millions of times in their inner loop to 
evaluate a transform or an algorithm. The timer 
must quickly and accurately answer timing queries 
to ensure slack integrity and timing closure after 
the circuit experiences one or more changes. The 
capability of a timer on both speed and accuracy 
fronts is crucial for reasonable turnaround time and 
performance.

To this end, we developed OpenTimer, a 
high-performance timing analysis tool in 2015 [4]. 
OpenTimer is an award-winning tool in the ACM 
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Incremental Timing 
Analysis Engine
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Chun-Xun Lin and Martin D. F. Wong
University of Illinois at Urbana–Champaign
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8 April 2021.

TAU Timing Analysis Contest (2014 
through 2016) and has received many 
recognitions in the CAD community 
(golden timers in the IEEE/ACM ICCAD 
CAD Contests and the ACM TAU Con-
tests [2]). OpenTimer is open-source, 
and we are committed to free shar-
ing of our technical innovation to 
make EDA a better and open place 

to engage more talented people contributing to 
the community [3]. So far, OpenTimer has been 
used in many industrial and academic projects 
such as Qflow, VSDflow, CloudV, DARPA IDEA, 
OpenDesign, LGraph, and Ophidian [5]–[9]. 
After four years of development, we announced 
a major release OpenTimer v2 [3]. We rewrote 
the codebase in modern C++17 and developed 
a new software architecture to facilitate the par-
allelization of incremental timing. The overview 
of the OpenTimer v2 software stack is shown 
in Figure 1. We summarize our contributions 
as follows.

• New parallel task programming model: We 
developed a new task-based programming 
model that enables efficient implementations 
of parallel decomposition strategies. The new 
model allows us to go beyond the traditional 
loop-based parallelization of incremental tim-
ing, thereby leading to more asynchrony and 
faster runtime.

• New software architecture and API concept: We 
developed the core timing routines around three 
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concepts, builder, action, and accessor. This sepa-
ration allows OpenTimer v2 to exploit parallelism 
from both intra and inter operations, followed by 
efficient lazy evaluation.

• New parallel incremental timing framework: 
We developed a task-based incremental timing 
framework that propagates timing naturally with 
the structure of the timing graph. Our framework 
can simultaneously perform both graph-based 
analysis and path-based analysis in parallel while 
keeping accurate results without breaking com-
plex dependencies between different timing 
propagation tasks.

Compared with the previous generation, Open-
Timer v2 is faster and more scalable in increasing 
the graph size and the CPU count. The program-
ming interface is also more succinct due to the 
new API concept. We have made many com-
ponents modular to make OpenTimer v2 user-
friendly and easier for developers to contribute to 
the codebase. These components include not only 
the core parallel incremental timing algorithms 
but also supporting readers/writers for SDC, lib-
erty, and SPEF that can be beneficial for other EDA 
applications. We believe OpenTimer v2 stands out 
as a unique system considering the technical inno-
vations and ensemble of software tradeoff and 
architecture decisions we have made. Recently, 
OpenTimer was selected as the Best Open-source 
EDA Tool Award in the 2018 WOSET at ICCAD 
(one out of 30) [10].

Challenges of incremental timing
Developing an efficient parallel incremental tim-

ing engine is a notoriously challenging job, requir-
ing in-depth knowledge of circuit, graph theory, 
parallel programming, and software engineering. 
We highlight the three aspects of the challenge we 
face:

• Complex task dependencies: Updating a timing 
graph takes on load capacitance, parasitics, 
slew, delay, arrival time, required arrival time, 
and more. These quantities are interdependent 
and are not economical to compute. The result-
ing task dependency in terms of encapsulated 
function calls is very large and complex.

• Irregular compute pattern: Updating a timing 
graph involves highly diverse computation 
patterns. We need to capture different forms of 

timing data whether it is structured in a local 
block or is flat in the global scope, to imple-
ment different delay calculators and pruning 
heuristics.

• Unknown API practices: Our user experience led 
us to believe that the API concept dominates the 
usability of a timer. When things go incremental, 
users and developers are often confused by the 
effect of each operation, such as the per-call com-
plexity, parallelism, and consistency. This can sig-
nificantly lift up the turnaround time and result 
in performance pitfall due to misunderstanding 
of API.

The extensibility and scalability to new tech-
nology is also an important factor to take into 
consideration while developing a general incre-
mental timing framework. We are not only inter-
ested in technical innovations but also in the 
modularity of the software to provide a better 
user experience.

Bottleneck in OpenTimer v1 and existing timers
One of the major differences between v1 and v2 is 

the parallelization of incremental timing. OpenTimer 
v1 and existing timers [11]–[13] dealt with incremen-
tal timing using loop-based parallelism [4]. In a rough 
view, we levelized the circuit into a topological order 
and applied the OpenMP “parallel for” directive 
to each node set level by level. This level-based decom-
position is advantageous in its simple pipeline concept 
and is by far the most implementation in existing timers, 
including industrial tools. Figure 2 illustrates this strat-
egy as an example of forward timing propagation. For 
each node, we update a number of dependent tasks 
including parasitics (RCP), slew (SLP), delay (DLP), 
arrival time (ATP), jump points (JMP), and pessimism 
reduction (RCP) [4]. However, this paradigm suffers 
from many performance drawbacks. For example, the 

Figure 1. OpenTimer v2 software architecture [3].



64 IEEE Design&Test

Open-Source EDA

number of nodes can vary from level to level, resulting 
in highly unbalanced thread utilization. Also, there is 
a synchronization barrier between successive levels to 
impose task dependencies. The overhead can be large 
for graphs with long data paths. Furthermore, we found 
it difficult to add to the pipeline other analysis frame-
works that require diverse modeling techniques, for 
example, signal integrity and cross-talk analysis.

Big idea 1: A new parallel task 
programming model using modern C++

After many years of research, we came to a conclu-
sion that the biggest hurdle to a scalable parallel timer 
is a suitable parallel programming model. In addition to 
the traditional loop-based approach, the programming 
model must be capable of task-based parallelism. In 
fact, we have tried multiple options, such as OpenMP 

4.5 tasking and Intel Threading Building Blocks (TBB), 
that are commonly used in EDA applications. We found 
them unsuitable to our workload for various reasons. 
For instance, OpenMP 4.5 tasking is static. Unfortunately, 
it is difficult to decide the timing graph at the time of 
programming. The problem of TBB is the programma-
bility. Users need to understand complex task constructs 
and templates that are often at low level and hard to 
maintain. Similar reasons exist in other libraries as well. 
Therefore, we decided to develop a new parallel task 
programming model using modern C++ technology. 
Although the original purpose was for incremental tim-
ing, we later generalized it to a standalone open-source 
project called Taskflow to benefit generic C++ develop-
ers [14]. Note that the proposed parallel task program-
ming model is different from that mentioned in [15], 
which relies on a specialized scheduler to insert tasks 
dynamically into shared work queues. We focus on 
static modeling that maps the entire timing propagation 
graph into a task computation graph. When the graph is 
ready, the scheduler can perform whole-graph optimiza-
tion and schedule tasks using work-stealing to achieve 
dynamic load balancing.

Big idea 2: A new API concept and 
software architecture

With Taskflow in place, we develop a new soft-
ware architecture in OpenTimer v2 to enable effi-
cient parallel incremental timing. We group each 
timing operation into one of the three categories, 
builder, action, and accessor. A timing operation can 
be either a C++ method in the timer class or com-
mand in our shell. Hereafter, the term OpenTimer 
refers to v2 unless otherwise specified.

Builder: OpenTimer lineage
A builder operation builds up a timing analysis 

environment, for example, reading cell libraries and 
a verilog netlist. OpenTimer maintains a lineage 
graph of builder operations to create a task execu-
tion plan (TEP). A TEP starts with no dependency 
and keeps adding tasks to the lineage graph each 
time users call a builder operation. It records what 
transformations need to be executed when an action 
operation is called.

Figure 3 shows an example of OpenTimer line-
age. The lineage is made of five builder operations, 
read_celllib, read_verilog, read_sdc, 
enable_cppr, and insert_net. Each time 
users call a builder operation, the timer adds one or 

Figure 2. Loop-based parallel timing propagations. 
Each level applies a parallel_for to update timing 
from the fanin of each node [4].

Figure 3. OpenTimer lineage example of five builder 
operations (cyan). Three parsing tasks run in parallel.
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multiple tasks to the lineage graph. These operations 
are not evaluated until an action operation is issued. 
The advantage of this is fine-grained task parallelism. 
An operation is divided into several smaller tasks 
that can run in parallel with other counterparts. For 
example, reading an input file can be broken into 
two subtasks, parsing the file and digesting the data 
into OpenTimer’s in-memory model. It is obvious 
the parsing part can run in parallel with others as 
long as it precedes its corresponding digesting task. 
Maintaining a lineage of builder operations enables 
us to exploit both intra and interoperation parallel-
ism, followed by efficient lazy evaluation. Another 
side benefit of the lineage is the engineering change 
order (ECO) capability. We can easily keep track of 
the modifiers for state recovery or debugging.

Action: Update timing
A TEP is materialized and evaluated when users 

request the timer to perform an action operation, 
for example, reporting the arrival time and the 
slack value of a pin. Calling an action operation 
triggers a timing update from the earliest task to 
the one that produces the result of the action call. 
Internally, we create a task dependency graph 
and update timing in parallel, including forward 
propagation (slew and arrival time) and back-
ward propagation (required arrival time). Figure 4 
shows an example of task dependency graph to 
update a timer. The bottom-most call of every 
action operation is the method update_timing. 
The method explores a minimum set of nodes in 
the timing graph as propagation candidates and 
constructs a task dependency graph to carry out 
the timing update. Our tasking model can incor-
porate different types of timing propagation into a 
task. Unlike the level-based approach in v1, a task 
can start immediately after all its preceding tasks 
finish. This largely enhances asynchrony, giving 
rise to higher CPU utilization, and faster runtime.

Accessor: Inspect OpenTimer
An accessor operation lets users inspect the timer 

status and dump static timing information, for exam-
ple, dumping the timing graph for visualization pur-
poses or dumping the design statistics. All accessor 
operations are declared as constant methods in the 
timer class. Calling an accessor method does not 
alter any internal data structures of a timer.

Big idea 3: Parallel incremental timing 
analysis algorithms

We discuss, in this section, how OpenTimer per-
forms graph-based analysis and path-based analysis.

Graph-based analysis
At the bottom of every action operation, Open-

Timer calls update_timing to perform graph-based 
timing updates. The timer first evaluates the lineage 
(e.g., Figure 3) and discovers a list of frontier pins 
from which incremental timing should begin after 
a modification is applied [4]. We then identify the 

Figure 4. Example task dependency graph to carry 
out an action operation. The graph consists of forward 
propagation tasks (white) and backward propagation 
tasks (black).
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propagation candidates (downstream and upstream 
of frontier pins) and derive a task dependency graph 
for graph-based timing update (e.g., Figure 4). Execut-
ing the task dependency graph autonomously triggers 
a parallel incremental timing update.

Path-based analysis
We developed our path-based analysis using 

the path generation algorithm by Huang and Wong 
[16]. To our best knowledge, this is by far the fastest 

algorithm in the literature. The algorithm consists 
of two complementary data structures, suffix tree 
and prefix tree. Each path is transformed into an 
implicit representation that takes constant space 
and time. The suffix tree represents the shortest 
path tree rooted at a given endpoint of the design. 
The prefix tree is a tree order of timing arcs each 
representing a unique path deviated from a timing 
arc. Generating the top-k critical paths across all 
endpoints is extremely efficient under this data 
structure. It also largely facilitates the paralleliza-
tion as each pair of suffix tree and prefix tree is 
independent of each other at different endpoints. 
An example of the implicit path representation is 
shown in Figure 5.

Experimental results
OpenTimer v2 is implemented in C++17 on 

a 40-core 3.2-GHz 64-bit Linux machine with 
64–GB memory. We used G++ 8.0 with -std=c++17 
to compile the source. Experiments are undertaken 
on the TAU15 contest benchmarks with a golden 
reference generated by IBM Einstimer under static 
mode [2]. Table 1 compares the accuracy between 
OpenTimer v1 and v2 on a set of TAU15 contest 
benchmarks [2]. These benchmarks are where 
OpenTimer v1 failed to achieve full accuracy due 
to an implementation compromise between path 
generation and parallelization. The new software 
architecture in v2 lets us manage to resolve these 
issues and we are able to match the golden results 
completely. We did not observe too much runtime 
and memory difference between v1 and v2 on these 
benchmarks.

The TAU15 contest benchmarks have fewer than 
ten incremental timing iterations, making it hard to 
profile the performance. Therefore, we modified 
two circuits tv80 and vga_lcd, on which both v1 
and v2 acquire full accuracy, to incorporate 300 
incremental timing iterations. In each iteration, we 
randomly modify the designs (e.g., repower_
gate) and call report_timing to trigger incre-
mental timing updates. As shown in Figure 6, v2 is 
consistently faster than v1 (2.14× on tv80 and 2.19× 
on vga_lcd). About 64% of the speed-up came from 
replacing the pipeline-based parallelism with the 
new tasking framework. Figure 7 plots the runtime 
scalability of v1 and v2 over an increasing number 
of cores. Regardless of the core count, v2 is always 
faster than v1. Both saturates at about 8–12 cores. 

 
Table 1. Accuracy comparison between OpenTimer v1 and v2 on 
TAU15 contest benchmarks [2].

Figure 5. OpenTimer applies implicit path 
representation based on a suffix tree and a prefix 
tree data structures per query to perform path-based 
analysis [16].

Figure 6. Runtime comparison of incremental timing.
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The scalability is affected by many factors such as 
the graph structure and the size of incremental tim-
ing. A primary reason that prevents v2 from scaling 
beyond 12 cores is the data size. Most data for incre-
mental timing are sparse. They do not span across 
large cones, as full timing, which produces a large 
amount of data for higher parallelism.

Figure 8 shows the runtime profiling for task-
based approach in OpenTimer v2 and loop-based 
levelization in v1. We measure the time each sig-
nificant portion of update_timing takes in a 
piechart. Creating a task graph occupies about 10% 
of the entire runtime and executing the graph takes 
the majority of 88%. On the other hand, the loop-
based approach spent up to 26% on updating the 
level list and the parallel execution of tasks across 
all levels takes 71%.

in thiS article, we presented OpenTimer v2—a 
new parallel incremental timing analysis tool. We 
have developed a new parallel task programming 
model and applied it to design an efficient paral-
lel incremental timing framework. Also, we have 
introduced a new API concept that defines a clear 

operation effect on top of our paral-
lelization framework. The source of 
OpenTimer v2 is available at [3]. 
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Editor’s notes:
This article introduces an architecture exploration tool to study and 
understand the tradeoffs of future processor systems using nonvolatile 
memory and help guide the design of the future.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 EnErgy EfficiEncy sErvEs as a critical factor 
in designing embedded systems. Furthermore, the 
growing dominance of energy harvesting systems 
(EHSs) in sensor-rich applications has eventuated an 
emerging trend in wearable-systems and IoT devices 
as an alternative to battery-powered embedded sys-
tems. Most of these applications are designed for 
resource-constraint environments, and EHSs utilize 
ambient-energy sources such as solar, piezoelectric, 
RF, etc. [1]–[3].

State-of-the-art EHSs exploit nonvolatile memories 
(NVMs), such as ferroelectric random access mem-
ory (FRAM) instead of FLASH memory, to improve 
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Ali Hoseinghorban, Mohammad Abbasinia, 
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energy efficiency and 
performance [4], [5]. 
NVMs have interesting 
features such as byte 
accessibility, low access 
latency, and low energy 
consumption compared 
to FLASH memories, 
which improves cost, 

weight, and energy efficiency of state-of-the-art 
EHSs [6]. On the other hand, SRAM has lower 
access latency and energy consumption compared 
to NVMs, while it dissipates higher leakage power. 
Furthermore, SRAM cannot hold data in the case of 
power failure in EHSs [5]. To this end, the state-of-
the-art EHSs exploit hybrid NVM-SRAM memory to 
take advantage of both memories. For instance, the 
MSP430FR family, commercially off-the-shelf micro-
controllers by Texas Instruments, use hybrid FRAM-
SRAM memory.

In EHSs, the processor runs an application, until 
the stored energy in the capacitor is higher than 
the cutoff threshold. When the capacitor’s energy 
depletes, the system turns off the processor and turns 
it on again when the capacitor accumulates enough 
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energy. When the system turns off the processor, 
NVM keeps the data, while SRAM loses them; so, the 
processor must consider an appropriate check-point-
ing policy to avoid data inconsistency issues [1], 
[7]. Data inconsistency occurs when the processor 
fails to complete the program while some data are 
changed in the NVM. So, merely re-executing from 
the last check-point with modified data would result 
in wrong functionality.

In addition to check-pointing policy, several fac-
tors influence the performance and energy efficiency 
of a given EHS, such as ambient source power trace, 
capacitor size, and application memory access 
patterns. The use of real hardware platforms, i.e., 
MSP430FR microcontrollers for experiments, gives 
more reliable and accurate results that rule out all 
simulation errors. However, examining a diverse 
range of experimental conditions on hardware is dif-
ficult and time-consuming. Furthermore, the extrac-
tion of useful information such as the number of 
memory accesses, the number of check-points, and 
charging time of the system is either impossible or 
imposes a significant overhead.

In this article, we presented CATNAP-Sim,1 a sim-
ulator for EHSs, with NVP and hybrid NVM-SRAM 
memory. We have integrated the energy and perfor-
mance characteristics of MSP430FR5969 and Wang’s 
power system model [6] into SimpleScalar [8]. We 
also implemented several check-pointing policies 
in CATNAP-Sim [1], [2], [7]. Furthermore, we com-
prehensively explore the design space and discuss 
the effects of exploiting SRAM, solar power strength, 
capacitor size, benchmark, and check-pointing pol-
icy on the EHSs.

The novel contributions of this work are listed as 
follows.

• Energy consumption of MSP430FR5969, a com-
mercial off-the-shelf platform, is measured using 
Energy-Trace++, and the results are integrated 
into CATNAP-Sim.

• The low overhead, capacitor-less, converter-less, 
and state-of-the-art power system model [6] is 
integrated into CATNAP-Sim.

• CATNAP-Sim provides an exhaustive design 
exploration for various parameters, such as 
capacitor size, ambient power trace, check-point-
ing policy, and applications. We provide a set of 

1We released CATNAP-Sim as an open-source simulator, and it could be down-
loaded from http://esrlab.ce.sharif.ir/download/CATNAP-Sim.gz.tar.

scripts to run simulations in parallel to improve 
the simulation time.

• We show how CATNAP-Sim marks important 
tradeoffs between charging time, execution time, 
failure rate, check-pointing overhead, and energy 
consumption for different check-pointing policies.

Background and related works
NVPs exploit hybrid SRAM-NVM memory 

because the use of SRAM in the memory hierarchy 
improves the efficiency of the system significantly; 
however, SRAM loses its data in the case of a power 
failure. So, the system must consider an appropriate 
check-pointing policy to reduce the check-pointing 
overheads while eliminating the data inconsistency 
in the system. The inconsistency problem occurs 
when the processor modifies some data on the 
NVM, and cannot back up the system successfully. 
Therefore, re-execution from the last successful 
check-point might produce incorrect results. The 
check-pointing policy in the literature can be classi-
fied into four groups.

In the software check-pointing policy, the pro-
grammer divides the application into a set of tasks 
(functions), and the system backs up after the suc-
cessful execution of each task [2]. In this policy, the 
programmer identifies each task’s sensitive data dur-
ing the development phase; in the online phase, the 
system copies the sensitive data to a temporary mem-
ory before the execution of each task. Therefore, the 
system can resolve the inconsistency problem with 
low energy and area overhead. However, setting the 
size of tasks requires precise knowledge about the 
system’s energy consumption and capacitor, which 
might not be available in the development phase.

In the compiler check-pointing policy [1], the 
compiler analyzes the control flow graph of an 
application and inserts check-pointing instructions 
in different application lines. The compiler detects 
write-after-read (WAR) pairs targeting the same 
address and adds a check-point instruction between 
them to deal with the inconsistency problem. This 
approach guarantees the program’s consistency 
without user interaction, while it imposes too many 
check-points to the application [7].

In the low-voltage-threshold check-pointing pol-
icy [5], the processor executes the program until it 
receives the capacitor’s low-voltage interrupt from 
the capacitor’s voltage controller; then, the system 
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starts to back up the SRAM. In this approach, the sys-
tem performs backups only when necessary; so, the 
number of check-points is ideal. However, because 
of some nonideal factors like imperfect knowledge 
of the state-of-charge, unknown backup size, and 
input power fluctuations, setting a precise thresh-
old to guarantee successful backup is a challenge. 
Finally, in the watchdog check-pointing policy [7], 
the system statically or dynamically sets a watchdog 
timer threshold, and when the timer overflows, the 
system creates a backup of the SRAM. The inconsist-
ency problem in low-voltage-threshold and watchdog 
check-pointing policies is hard to resolve because 
the check-point locations are unknown in the devel-
opment phase. In the case of failure, the processor 
needs to re-execute the application from scratch 
[5] or monitor the data modification in NVM [7], 
which increases the area and energy overheads of 
the system.

Bazzaz et al. [9] proposed an energy estimation 
model and a simulator to estimate battery-pow-
ered embedded systems’ energy consumption. 
However, this simulator is not suitable for EHSs 
because there are many indispensable parameters, 
such as solar power fluctuation, capacitor size, and 
check-pointing policy, which are not considered 
in MEET and other simulators for battery-powered 
devices. Recent studies presented several models 
for EHSs and IoT devices [3], [6]. However, they did 
not provide a simulator to examine the behavior of 
state-of-the-art EHSs.

Several in-house simulators used in previous 
research studies are customized SimpleScalar [7] or 
gem5 [1] specifically for the focus of their particular 
research purposes; therefore, they cannot be used in 
general, all-inclusive approaches. Additionally, most 
of them modified the default architecture of the 
processor or memory subsystem; so, they could not 
evaluate their simulator’s accuracy with real hard-
ware. NVPSim [10] is a gem5-based simulator that 
analyzes the effects of cache memory for nonvola-
tile processors in EHSs. NVPSim considered an ideal 
capacitor as the energy buffer of the system, which 
can store any amount of energy while real capaci-
tors saturate after accumulating a specific amount of 
energy [6]. NVPSim employs low-voltage-threshold 
as the system’s check-pointing policy, but it does 
not investigate the inconsistency challenge. But 
CATNAP-Sim considers the effects of inconsistency 
on different check-pointing policies and supports all 

four check-pointing policies. So, the user can apply 
a hybrid policy by configuring the simulator.

CATNAP-Sim structure
EHSs have four main components, including the 

source of ambient power, processing unit, power 
system, and energy storage (Figure 1a). The power 
system scavenges the ambient solar power and 
accumulates it in the bulk capacitor. The control-
ler monitors the voltage of the bulk capacitor and 
closes the switch when the voltage rises above the 
trigger voltage or opens it when the capacitor volt-
age falls below the cutoff voltage. The controller 
raises an interrupt to the processor when the capaci-
tor’s voltage falls below the low threshold.

As we mentioned previously, data inconsist-
ency is an important challenge in EHSs with NVM 

Figure 1. Overview of typical EHS components and 
the structure of CATNAP-Sim. (a) Components of an 
EHS, (b) structure of CATNAP-Sim, (c) solar power 
traces during eight days [11], and (d) P–V curve [6] 
of the power system.
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[1], [2], [7]. To address and solve data inconsist-
ency challenges, a simulator is required to monitor 
changes in the memories. Furthermore, to consider 
the effect of high access latency of NVMs, a simulator 
is needed to evaluate the performance and energy 
efficiency of different strategies such as scratchpad 
memory (SPM) allocation, cache memory architec-
tures, and eviction policies in EHSs [2], [5]. In the 
SimpleScalar timing model, all instructions except 
for loads and stores are executed in one cycle. The 
latency of load and store instructions depends on 
which memory type (SRAM or NVM) the requested 
data are accessed [8]. In this article, in line with 
previous simulators, such as MEET [9] and NVPSim 
[10], we modified an existing ARM simulator called 
SimpleScalar. So, we kept the SimpleScalar simula-
tor modeling intact, but provided additional func-
tions for modeling the input power, check-pointing 
policies, and NVM. We used Sim-profile mode of 
the SimpleScalar version 3.0. This version supports 
ARM7 integer instruction set and FPA floating-point 
extensions.

The structure of CATNAP-Sim is depicted in 
Figure 1b, and the modified and additional compo-
nents to the SimpleScalar simulator are outlined with 
patterns. Harvesting and embedded systems exploit 
ultralow-power microcontrollers such as ARM Cor-
tex-M, ARM7, or TI MSP430 with scratchpad memories 
to reduce energy consumption. Therefore, in line with 
recent studies targeting embedded and EHSs [7], [9], 
CATNAP-Sim is based on SimpleScalar, which models 
ARM7 cores (three-stage pipeline RISC cores without 
cache memory). CATNAP-Sim is able to work with 
thumb or regular instruction sets. We also have a plan 

to extend CATNAP-Sim to support simulation of EHSs 
with ARM Cortex-A processors with zero, one, or two 
cache levels using gem5 simulator.

Source of ambient power
Several surrounding ambient energy sources can 

be utilized to provide electrical energy through var-
ious designated harvesting technologies like solar 
and RF [3]. Among the ambient power sources, 
harvesting solar energy through photovoltaic (PV) 
cell technology is desirable due to the high availa-
bility and remarkable energy density [6], [11]. Light 
energy patterns can be predictable or stochastic, 
responding to numerous environmental circum-
stances such as time, location, and mobility of the 
device. Figure 1c depicts the input irradiance for 
eight days [11], and it shows that the radiant power 
is significantly low throughout most of the day. 
Therefore, energy consumption in EHSs is a critical 
challenge that directly affects the forward progress 
of the system.

Processing unit
The advantages of NVPs with NVM-SRAM mem-

ory, e.g., fast backup, fast restore, and low leakage 
energy make them suitable for EHSs with unreli-
able energy sources. However, the state-of-the-art 
NVPs exploit nonvolatile registers, which consist of 
a nonvolatile storage cell attached to a CMOS flip-
flop [4]. During the ordinary execution of the pro-
gram, the processor works with the CMOS flip-flops; 
during backup, data in flip-flops are stored in non-
volatile cells; during boot-up, flip-flops restore their 
data from the nonvolatile cells. Although emerging 
NVMs considerably reduce the energy consumption 
of backups and restores compared to FLASH mem-
ories [4], backup and restore operations in NVPs 
are still expensive because processors need to back 
up all the registers of the system [2], [7]. In addi-
tion to registers, the main memory in an NVP con-
sists of hybrid SRAM-NVM memory to improve the 
efficiency and performance of both execution and 
backups because access latency and energy con-
sumption of NVMs (especially write accesses) are 
higher than SRAM.

To validate the energy consumption and execu-
tion time of the CATNAP-Sim, we executed 15 appli-
cations on MSP430FR5969 and CATNAP-Sim, and 
the results are presented in Table 1. Although ARM7 
and MSP430 have different instruction-sets, both are 

 
Table 1. Comparison between the energy and execution time of 
15 applications on msp43fr5969 and CATNAP-Sim.
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RISC-based microcontrollers optimized for low-power 
applications. Therefore, most of the common instruc-
tions in both microcontrollers have similar behavior. 
Table 1 shows that for small applications, such as 
crc32, adpcm, and ludcmp10, the energy consump-
tion error is more than 9.6%, whereas, for large appli-
cations, such as insertsort, stringsearch, and qsort, the 
error is less than 4.2%. So, compared to a real platform, 
the energy consumption and execution time error of 
CATNAP-Sim is less than 13.30% and 8.21%, respec-
tively. NVPSim did not provide any report regarding 
the energy consumption error, but the execution time 
error in this simulator is less than 9.31%.

Power system
The power system accumulates the ambient 

energy in the system’s energy storage and turns  
on/off the processor. PV cells are among the most pop-
ular and convenient technologies to scavenge ambi-
ent solar power and convert it into electrical energy. 
CATNAP-Sim exploits Wang’s power system model 
[6] for absorbing solar energy and storing it in the 
system’s energy storage. In this model, dc–dc convert-
ers, which are necessary for conventional EHSs, are 
replaced with a simple controller to improve energy 
efficiency. Furthermore, the use of a bulk capaci-
tor as the system’s energy storage provides higher 
energy efficiency, less complexity, and improves the 
area, cost, and weight of the system compared to 
super-capacitors and rechargeable batteries.

Wang’s model is evaluated with a real hardware 
prototype. The evaluation shows that the leakage 
and other nonideal factors have a more significant 
effect on lower irradiances. So, the input power 
model’s error decreases from 8.2% to 2.7% when irra-
diance increases from 100 to 440 W/m2.

NVPSim considers an ideal capacitor as the energy 
buffer of the system, which can store any amount of 
energy while real capacitors saturate after accumu-
lating a specific amount of energy. Wang’s power 
model (Figure 1d) shows that the incoming current 
from the PV cells drops when the capacitor’s voltage 
goes above the saturation voltage. So, the absorbed 
power depends on the accumulated energy (voltage) 
of the capacitor. Therefore in NVPSim, the model for 
absorbing and accumulating energy is not realistic. 
NVPSim did not report any error, but in CATNAP-Sim, 
we used Wang’s model [6] with less than 8.2% error.

There is a switch for turning the processor on/off 
by connecting and disconnecting the processor from 

the capacitor. If the capacitor’s voltage drops below 
the cutoff voltage, the controller opens the switch 
to recharge the capacitor. When the stored energy 
exceeds a predefined trigger threshold, the controller 
closes the switch to turn on the processor. The system 
exploits a small decoupling capacitor (in the scale 
of a few nano-farads) to tolerate noise and create 
backups from processor registers in the case of power 
failures. Figure 1a outlines the components of an EHS 
proposed by Wang et al. [6]. Figure 1d shows the 
power–voltage curve of the absorbed power, which 
peaks when the capacitor’s voltage is in the range 
2.5–3 V. In CATNAP-Sim, the user can set the cutoff 
and trigger voltage to scavenge the maximum power 
from the ambient source.

Energy storage
The energy storage is responsible for accumu-

lating absorbed energy and providing energy for 
the NVP. The size of the capacitor is an important 
parameter in EHSs because using small capacitors 
would increase the number of power interrupts, 
and using large capacitors results in longer charging 
time and response time in the system [7], [10]. In 
CATNAP-Sim, the user can configure the size of the 
capacitor to provide a fair tradeoff between charging 
time and the number of power interrupts. The avail-
able energy in the capacitor in cycle i is calculated 
as follows:

, , , ,cap i cap i in i nvp i dpteng eng eng eng eng−= + − −1  (1)

 
Table 2. Setup configurations used CATNAP-Sim.
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where engcap,i, engin,i, engnvp,i, and engdpt, represent 
the accumulated energy in the capacitor, absorbed 
energy, energy consumed by NVP, and the dis-
sipated energy of all of the modules in the system 
except the processor, respectively.

Considering the frequency of NVP (freq), the 
capacitance of the bulk capacitor (C       ), and the 
power–voltage curve (Figure 1d) of the power sys-
tem (curveP–V ), the absorbed power in cycle i could 
be estimated using the irradiance strength in cycle i 
(irri), and the voltage of the capacitor in cycle i − 1 
(voli−1) as follows:

( ), ,in i P V i ieng curve irr vol
freq− −= ×1

1

,cap i
i

eng
vol

C
−

−
×

= 1
1

2
.

The energy consumption of NVP consists of leak-
age power (pownvp,lkg) and dynamic power, and 
both NVM and SRAM have a notable impact on the 
dynamic energy consumption of NVPs. Therefore, 
the energy consumption of NVP in cycle i is calcu-
lated as follows:

, , ,nvp i nvp lkg ins ieng pow eng
freq

 = × + 
 

1

( ){ , ,
{ , }

mem i rd mem
mem sram nvm

rd eng
∈

+ ×∑
( )}, ,mem i wr memwr eng+ × .

The engins,i, engrd,mem, and engwr,mem show the 
energy consumption of executing an instruction 
on the NVP, reading from memory mem, and writ-
ing to memory mem, respectively. The mem is 
either NVM or SRAM, and the wrmem,i (rdmem,i) is 
one if the NVP executes store (load) instruction 
from mem at cycle i; otherwise, it remains zero. 
It is important to mention that the NVP only con-
sumes energy when the switch is closed, and the 
processor is on.

(2)

(3)

Experiments
We explore the design space of EHSs using 

CATNAP-Sim.

System setup
CATNAP-Sim takes the configuration of processor 

and memory as input. We measured average energy 
consumption and latency of backup, restore, non-
memory instructions, access to FRAM, and access 
to SRAM from MSP430FR5969 microcontroller using 
EnergyTrace++. CATNAP-Sim simulates a three-stage 
pipeline processor, and it can work with both thumb 
and regular instruction sets. However, in the evalua-
tions, we used 16-bit thumb instruction set because 
MSP430 is a three-stage pipeline 16-bit processor. Fur-
thermore, we used energy and latency parameters of an 
NVP with the ARM Cortex-M0 proposed by Bartling et 
al. [12], and we perform experiments with both micro-
controllers (Table 2). We add various input solar traces 
from Gorlatova et al. [11] to study the effects of input 
power’s strength and stability on EHSs (Figure 2a). All 
experiments are done with these 30 s traces, and users 
can import custom solar traces to the CATNAP-Sim. 
The users can implement their approaches with vari-
ous processors and platforms by changing these values 
in the simulator’s configuration file.

CATNAP-Sim is based on SimpleScalar, and 
NVPSim is based on gem5 simulator. The reports 
show that both SimpleScalar and gem5 are capa-
ble of executing more than several hundred million 
instructions per hour. Table 3 shows the simulation 
time for simulating with CATNAP-Sim and NVPSim 
on a server with ten 3 GHz Intel Xeon E5-2690 cores. 
The results show that for a single execution, NVPSim 
is faster than CATNAP-sim by up to eight times. How-
ever, we provide a set of scripts in CATNAP-Sim to 
run simulations in parallel and improve the simula-
tion time. So, for the execution of ten different sce-
narios, CATNAPSim improves the simulation time by 
up to 7.4 times over NVPSim.

Results
In the following, we discuss the effects of various 

parameters on the performance and energy effi-
ciency of EHSs.

Input power trace: Input power changes both in 
amount and pattern over time. For example, solar 
energy usually has its peak, moderate, and minimum 
power at noon, morning (or afternoon), and after 

 
Table 3. Comparison between simulation time of  
CATNAP-Sim and NVPSim.
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sundown (or at night), respectively. Another factor 
to consider would be the mobility of the device, 
whether the device is in motion or in a stable posi-
tion, which can profoundly affect the predictability 
of the input power.

Benchmarks: Energy consumption of accesses 
to memory (especially NVMs) has a significant 
contribution to the total energy consumption of 

the system. The number and pattern of accesses to 
memory are different between benchmarks. There-
fore, to yield more accurate simulation results, we 
added 15 applications from MiBench and Mälard-
alen to CATNAP-Sim. Figure 2c shows that for corner, 
the number of failed executed instructions becomes 
almost zero when the system exploits 150 µF capac-
itor, while for edge, this happens when the system 

Figure 2. Comprehensive design exploration using CATNAP-Sim. (a) Three weak, strong, 
and unstable solar traces used in simulations. (b) Effect of SRAM and check-pointing 
interval (epic application, 500 µF capacitor, unstable trace, watchdog check-pointing 
policy, and MSP430 microcontroller). (c) Effects of input power trace, capacitor size, 
and benchmarks on EHSs (watchdog check-pointing policy with 50,000 instructions 
thresholds and MSP430 microcontroller). (d) Effects of check-pointing policy and 
benchmarks on EHSs (unstable trace, 500 µF capacitor, and Cortex-M0 microcontroller). 
(e) Forward progress trace of EHS for the first 500 ms of execution (edge application, 
500 µF capacitor, unstable trace, and MSP430 microcontroller). (f) Voltage trace of EHS 
for the first 500 ms of execution (edge application, 500 µF capacitor, unstable trace, 
and MSP430 microcontroller).
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uses a 500 µF capacitor. The contribution of failed 
executed instructions in smooth application on 
response time is less than 2% for the system with a 
500 µF capacitor.

Capacitor size: The system can accumulate more 
energy with a larger capacitor, which reduces the 
number of power interrupts in the system, but the 
system requires more time to charge a larger capac-
itor [7], [10]. Thus, the large capacitor results in 
longer response time in the system, especially when 
the input power is weak. The results in Figure 2c 
show that the system with 50 µF is unable to com-
plete smooth in 30 s when it works under all solar 
traces depicted in Figure 2a. The system with 150 
µF also fails to complete smooth under weak solar 
irradiance. For corner, the system with 50 and 150 µF 
capacitors improves the average response time of 
the system with 500 µF capacitor by 61% and 58%, 
respectively.

Check-pointing policy: We compared three 
check-pointing policies using CATNAP-Sim for 
15 applications, and the results are presented in 
Figure 2d. Furthermore, Figure 2e and f displays 
the first 500 ms of the execution of one sample only 
to clearly show the detailed forward progress and 
voltage trace, respectively (for the sake of visibil-
ity, we cannot show the detailed forward progress 
and capacitor voltage trace for 30 s). In compiler 
check-pointing policy [1], many unnecessary back-
ups are imposed on the system, which increases the 
system’s energy and performance overhead. There-
fore, the forward progress is slow, and the capaci-
tor energy is depleted faster than other approaches. 
The watchdog [7] and low-voltage-threshold [5] pol-
icies make backup decisions during the execution 
time; hence, these policies need hardware modifi-
cations or operating system supports to guarantee 
the consistency of the application; otherwise, they 
need to re-execute the application from scratch. 
To this end, we implemented two policies: 1) soft-
ware plus watchdog (sw+wdt) and 2) software plus 
low-voltage-threshold (sw+lvt). So, in the case of 
failure, the processor resumes application from the 
last software check-point to keep consistency with-
out hardware modifications. Figure 2d shows that 
sw+wdt and sw+lvt have faster forward progress 
than compiler check-pointing policy. Furthermore, 
the system failed to complete seven applications 
with compiler policy. However, in sw+wdt and 

sw+lvt, the system only failed to complete one 
application.

The important challenge in check-pointing is to 
achieve an optimal point in a tradeoff between the 
total number of check-points and the total number 
of failed instructions caused by power failures. To 
this end, we used the watchdog policy with different 
thresholds, and the results are presented in Figure 2b. 
The results for hybrid NVM-SRAM show that when 
the watchdog threshold is set to 500, 5000, 50,000, 
500,000, and 5,000,000 instructions, the contribution 
of backup and restore (failed executed instructions) 
to total response time is 29.63% (0.02%), 11.71% 
(0.10%), 1.36% (0.61%), 0.18% (9.85%), and 0.03% 
(35.49%), respectively. It is noteworthy to mention 
that charge time. Results depict that the charging 
time of the system is 532, 134, and 422 ms, when the 
watchdog threshold is set to 500, 50,000, and 500,000 
instructions, respectively.

Memory type: The use of SRAM improves the 
energy efficiency and performance of embedded sys-
tems [1], [2], [5]. However, EHSs should backup the 
SRAM data to NVM when the backup signal is raised. 
Therefore, when the backup signals the backup, 
restore, and failed executed instructions increase the 
energy inefficiency in the system and result in longer 
a system with unified NVM (e.g., QuickRecall [4]) 
and a system with hybrid NVM-SRAM memory with 
various backup intervals. The results show that when 
the system sets the threshold too low (500) or too high 
(5,000,000), the hybrid NVM-SRAM increases the sys-
tem’s response time by 74% and 46%, respectively. 
The best result of the hybrid NVM-SRAM approach is 
achieved when the watchdog timer threshold is set to 
50,000 instructions, which improve the best result of 
the unified NVM approach (5000 instructions watch-
dog threshold) by 10%.

in this articlE, we proposed CATNAP-Sim, a 
nonvolatile processor for EHSs. We discussed the 
important components of state-of-the-art EHSs and 
the model of components which are utilized in 
CATNAP-Sim. CATNAP-Sim provides an opportunity 
for users to explore the design space exhaustively, 
find appropriate values for various parameters, and 
improve the performance and energy efficiency of 
EHSs. We also investigated the effects of various 
parameters, such as input power strength, bench-
marks, capacitor size, check-pointing policy, and 
impact of SRAM in EHSs. 



77March/April 2021

 References
 [1] M. Xie et al., “Avoiding data inconsistency in energy 

harvesting powered embedded systems,” ACM Trans. 

Design Autom. Electron. Syst., vol. 23, no. 3, p. 38, 2018.

 [2] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent 

execution without checkpoints,” Proc. ACM Program. 

Lang., vol. 1, no. OOPSLA, p. 96, 2017.

 [3] B. Martinez et al., “The power of models: Modeling 

power consumption for IoT devices,” IEEE Sensors J., 

vol. 15, no. 10, pp. 5777–5789, Oct. 2015.

 [4] H. Jayakumar et al., “QuickRecall: A HW/SW approach 

for computing across power cycles in transiently 

powered computers,” ACM J. Emerg. Technol. Comput. 

Syst., vol. 12, no. 1, p. 8, 2015.

 [5] H. Li et al., “An energy efficient backup scheme with 

low inrush current for nonvolatile SRAM in energy 

harvesting sensor nodes,” in Proc. Design, Autom. Test 

Eur. Conf. Exhibit. (DATE). San Jose, CA, USA: EDA 

Consortium, 2015, pp. 7–12.

 [6] Y. Wang et al., “Storage-less and converter-less 

photovoltaic energy harvesting with maximum power 

point tracking for Internet of Things,” IEEE Trans. 

Comput.-Aided Design Integr. Circuits Syst., vol. 35, 

no.2, pp. 173–186, Feb. 2016.

 [7] A. Hoseinghorban, M. Abbasinia, and A. Ejlali, 

“PROWL: A cache replacement policy for consistency 

aware renewable powered devices,” IEEE Trans. Emerg. 

Topics Comput., early access, Oct. 14, 2020, doi: 

10.1109/TETC.2020.3031114.

 [8] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: 

An infrastructure for computer system modeling,” 

Computer, vol. 35, no. 2, pp. 59–67, 2002.

 [9] M. Bazzaz, M. Salehi, and A. Ejlali, “An accurate 

instruction-level energy estimation model and tool 

for embedded systems,” IEEE Trans. Instrum. Meas., 

vol. 62, no. 7, pp. 1927–1934, Jul. 2013.

 [10] Y. Gu et al., “NVPsim: A simulator for architecture 

explorations of nonvolatile processors,” in Proc. 21st 

Asia South Pacific Design Autom. Conf. (ASP-DAC), 

Jan. 2016, pp. 147–152.

 [11] M. Gorlatova, A. Wallwater, and G. Zussman, 

“Networking low-power energy harvesting devices: 

Measurements and algorithms,” IEEE Trans. Mobile 

Comput., vol. 12, no. 9, pp. 1853–1865, Sep. 2013.

 [12] S. C. Bartling et al., “An 8 MHz 75 µA/MHz zero-

leakage non-volatile logic-based Cortex-M0 MCU SoC 

exhibiting 100% digital state retention at VDD=0V with 

<400ns wakeup and sleep transitions,” in IEEE Int. 

Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 

Feb. 2013, pp. 432–433.

Ali Hoseinghorban is currently pursuing a PhD 
with the Computer Engineering Department, Sharif 
University of Technology, Tehran, Iran. He is also 
a Visiting Researcher with the Chair for Processor 
Design, CFAED, Technische Universität Dresden, 
Dresden, Germany. His research interests include 
energy harvesting systems and emerging nonvolatile 
memories.

Mohammad Abbasinia has a BSc in computer 
engineering from Shahid Beheshti University, Tehran, 
Iran (2015) and an MSc in computer engineering from 
the Sharif University of Technology, Tehran (2020). 
His research interests include energy harvesting 
systems and emerging nonvolatile memories.

Ali Paridari is currently pursuing an MSc with 
the Department of Computer Engineering, Sharif 
University of Technology, Tehran, Iran. His research 
interests include energy harvesting systems and 
emerging nonvolatile memories. Paridari has a BSc 
from the Department of Computer Engineering, 
Shahid Beheshti University, Tehran, Iran (2018).

Alireza Ejlali is an Associate Professor of 
Computer Engineering with Sharif University of 
Technology, Tehran, Iran. His research interests 
include low power design and fault-tolerant 
embedded systems.

 Direct questions and comments about this article to 
Alireza Ejlali, Department of Computer Engineering, 
Sharif University of Technology, Tehran, Iran; ejlali@
sharif.edu.

mailto:ejlali@sharif.edu
mailto:ejlali@sharif.edu


78 2168-2356/20©2020 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

General Interest

Editor’s notes:
This article presents a type of negative group delay (NGD) circuit based on 
transmission line resonators. In order to obtain the circuit’s S-parameters, 
the  article uses a combination of ABCD and Z-parameters. Analytical design 
equations are presented, which are verified using circuit simulations.

—Binoy Ravindran, Virginia Tech

 Since itS firSt experimentation in the micro-
wave frequencies [1], [2], the negative group delay 
(NGD) circuits have attracted much attention of 
electronic, RF, and microwave research engineers. 
Because of its counterintuitive effect, the NGD 
function remains unfamiliar and causes skepticism 
among RF and microwave engineering communities.

Further understanding about the NGD phenome-
non intuitively occurred during the microwave met-
amaterial revolutions in the 2000s [3]–[5]. The NGD 
effect was found with double negative index peri-
odical structures constituted by several periodical 
left-handed (LH) cells. However, the matematerial 
structure-inspired NGD passive circuits suffer from high 
attenuation losses which may reach 20 dB [3]–[5] even 
with a single cell. Various designs, such as microstrip 
line-based [6] and dual band NGD circuit [7],  
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were performed for illustrating of this 

unfamiliar microwave circuit.

To solve the circuit application 

problems caused by the high insertion 

loss, some interesting NGD passive net-

works, for example, a general-purpose 

gain amplifier, were employed to com-

pensate high signal attenuation (see 

[8]–[11]). Active transversal filter-based NGD topol-

ogies using non-Foster elements were initiated [9], 

[10]. Encouraging results guaranteeing stability in 

the NGD bandwidth were obtained. A simpler low-

noise amplifier (LNA) cascaded with RL and RC- 

network passive circuit is introduced in [11] and 

[12]. Nevertheless, the embedded amplifiers can 

increase the out-of-band noise and design com-

plexity. Also, the NGD active circuits require 

further research work to reduce the design com-

plexity considerably and to maintain the opera-

tion stability in the NGD bandwidth. Moreover, 

the active NGD circuits were still needed for fur-

ther investigation notably about the nonlinearity 

and the definition of active NGD circuit Figure-

of-Merit (FoM). In addition to design complexity, 

the applications of NGD-active microwave circuits 

are not yet potentially guaranteed in this decade. 

Therefore, the design of a low-loss microwave 

NGD-passive circuits is still a challenging and  

attractive task.

Sébastien Lalléchère
Université Clermont Auvergne (UCA), CNRS
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To avoid the design complexity, more efforts have 
been put since the early 2010s on the design of low 
attenuation NGD-passive circuits [13]–[22]. Among 
the technical solutions for the passive NGD circuit 
design, innovative topologies of distributed elements 
such as microstrip coupling lines (CLs) and transmis-
sion lines (TLs) were developed in [13]–[18]. Two 
compact and self-matched NGD microstrip circuits 
[18] constituted by CL loaded lossy TLs and resistor 
were designed to obtain the reflection coefficient 
greater than 30 dB. Some NGD topologies employ 
complicated microwave functions as power dividers 
or power combiners to improve the circuits’ band-
width. However, the NGD applications remain practi-
cally limited by the design complexity.

In parallel to the research on low attenuation 
NGD-passive circuits, diverse NGD functions were 
developed [13]–[20]. NGD circuit inspired from 
absorptive band-stop filter topology was introduced 
in [16]. Further works on the design of compact NGD 
circuits were also made [18]–[21]. A multiband NGD 
circuit operating simply with tri-parallel uncoupled 
lines was designed in [20]. To meet the maturity of 
applications [22], [23], the NGD microwave circuit 
researchers must overcome the limitations [24] nota-
bly in terms of attenuation and still need to explore 
the different topologies of NGD microwave circuits.

For this reason, an unfamiliar microwave-passive 
topology of reverse T-shape stub is initiated in this 
article. It will be investigating whether the topology 
may be able to generate NGD function guaranteeing 
low signal attenuation. The NGD network is com-
posed of fully distributed elements as two identical 
CLs and identical TLs.

This article is organized in three main sections as 
follows.

• To gain a good familiarity about the NGD  
analysis, theoretical investigation based on the  
S-parameter modeling is developed in the “NGD 
theory of the under design intercoupled branch 
reverse T-stub topology” section. The bandpass 
NGD analysis will be performed by identifying 
the NGD center frequency. The NGD existence 
condition will be established from the analytical 
group delay expression derived from transmis-
sion coefficient.

• In the “Design, simulation, and experimental 
validations” section, the calculated results, sim-
ulations, and experimental validations will be 

discussed. To verify the feasibility of the NGD 
theory, a proof-of-concept of reverse T-stub 
microstrip circuit design will be described.

• Finally, in the last section, a conclusion is pro-
vided.

NGD theory of the under design  
intercoupled branch reverse  
T-stub topology

In this section, the modeling of the unfamiliar NGD 
topology constituted originally by reverse T-shape stub 
with branch line intercoupled will be introduced. Com-
pared to the existing work, in particular, the NGD CL 
topology investigated in [19], a new distributed reverse 
T-shape stub topology is investigated in this article. 
Accordingly, completely new analytical expressions 
governing the NGD analysis are established.

Analytical modeling methodology of reverse 
T-topology

After topological description, the global circuit input 
impedance will be analytically investigated based on 
the approach reported in [25] and [26]. The equivalent 
S-parameter analytical model is established. Then, the 
analytical group delay expression is extracted from the 
reverse T-stub topology transmission coefficient. Then, 
the NGD analysis will be established.

Topological description
Figure 1 sketches the electrical circuit configura-

tion of the “ | ” or reverse T-stub-based NGD topol-
ogy under study. It acts as a two-port circuit built 
with fully distributed passive structure. It is built with 
three identical TLs. The secondary branches of “T” 
are constituted by two CLs and TLs. The constituting 
elementary CLs and TLs are assumed having the same 
characteristic impedance Zc and electrical length θ. 

Figure 1. Reverse T-stub-based topology 
under study.
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Acting as a microwave topology, our analysis and 
design must be based on the S -parameters. As shown 
in Figure 2, the overall topology can be reduced to 
a parallel impedance Zin. To determine the global  
S-parameter, we can proceed with the equivalent 
impedance matrix of Zin.

Methodological description
Acting as a passive circuit, the NGD design method 

including the theoretical analysis can be summarized 
by the flow chart depicted in Figure 3. The key point of 
the NGD analysis of our reverse T-topology is the calcu-
lation of the S-parameters. The schematic of the topol-
ogy shown in Figure 1 with equivalent matrix blocks is 
shown in Figure 4. According to the microwave circuit 
theory, the S-parameter can be obtained from the two-
port circuit impedance matrix via the Z-to-S transform.

Elementary parameter definition
The constituting elementary lines are assumed 

with physical with physical length d, which corre-
sponds to the delay τ and the electrical length θ. We 
denote the propagation wave speed by v, and the 
relationship between d and τ = d/v. We recall that 

the electrical length is given by  θ (ω ) = ωτ  the basic 
elementary CLs and TLs. For the sake of analytical 
simplification of the S-parameter and group delay 
expressions, the reverse T-stub constituting CLs and 
TLs are considered lossless.

Analytical approach and modeling of reverse 
T-topology input impedance

The calculation of Zin will be realized from the 
operation between the ABCD- and Z-matrices of 
the constituting elements of the reverse T-stub cir-
cuit. By means of ABCD matric, the NGD topol-
ogy global input impedance can be explicated as    

and the term x =  √
_____________

   (1 + C  )  / (1 − C  )    where C is the 
voltage coupling coefficient of the coupler.

S-parameter modeling
The following paragraphs will explore the NGD 

analysis of our T-stub-based topology. Acting as a 
microstrip circuit, the analysis is established with 
S-parameter modeling.

Figure 2. Equivalent reduced circuit of the 
topology shown in Figure 1.

Figure 3. Flow chart of NGD modeling 
applied to the reverse T-topology. 
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Extraction method of global S-parameter
First, according to the circuit and system theory, 

we remember that the impedance matrix of the 
reduced circuit of Figure 2 is given by

   [Z ⊥  (jω) ]  =  [ 
 Z  in   ( jω)    Z  in   ( jω) 

   
 Z  in   ( jω)    Z  in   ( jω) 

 ] .  (2)

Knowing  Zin, the associated S-matrix can be obtained 
via the Z-to-S transform matrix relationship

  [ S  
⊥
   (jω)]  =  ( [ Z  ⊥   (jω)]  −  R  0     [1]   2  ) 

×   ( [ Z  ⊥   (jω)]  +  R  0     [1]   2  )    −1               (3)

with R0 = 50  Ω is the terminal load reference imped-
ance and the two-dimension identity matrix

     [1]   2    =  [ 1  0  
0

  
1
 ] .  (4)

Frequency-dependent expressions of reflection 
and transmission coefficients 

Substituting input impedance Zin introduced in 
(12) into the determined S-matrix, the reflection and 
transmission coefficients as a function of Zc,  θ (ω), 
and x were, respectively, written as

   j   (x + 1)    2   R  0   cos [θ (ω) ] 

 { 
2 (  x   2  + 1)   sin   4  [θ (ω) ] − x sin[2θ (ω)]

    
− 2 (  x   2  − 1)   cos   2  [θ (ω) ] 

  }  
 

  
 (5)

  { 
2   ( x   2  + 1)    

2
   sin   4  [θ (ω) ]  − 2   ( x   2  − 1)    

2
   cos   2  [θ (ω) ] 

     
− 5x ( x   2  + 1)   sin   2  [2θ (ω) ]  + 32  x   2   cos   2  [0 (ω) ] 

  }  

 j  Z  c    sin[θ(ω )] 

 
 

with

 ξ(jω ) =   

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

 R  0   cos [θ (ω)]  

⎡
 ⎢ 

⎣
 
 χ  2    sin   4  [θ (ω)] 

  +  χ  4    cos   2  [θ (ω)]   sin   2  [θ (ω)]    
+  χ  7    cos   2  [θ (ω)] 

  

⎤
 ⎥ 

⎦
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⎡

 ⎢ 

⎣
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+  χ  5    cos   4  [θ (ω)] 

  

 +  χ  6    cos   2  [θ (ω)] 

  

⎤

 ⎥ 

⎦

 

 

⎫

 

⎪
 ⎬ 

⎪
 

⎭

  

   

and

Magnitudes of reflection and  
transmission coefficients

Similar to the classical microwave circuit analy-
ses, before the NGD analysis, it is crucial to perceive 
the frequency responses of the transmission coeffi-
cient. Accordingly, the associated magnitude of the 
reflection and transmission coefficients is, respec-
tively, given by

  s  
21
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(11)

 ζ(ω ) = 

   j   (x + 1)    2   R  0   cos [θ (ω) ]  

(7)

  

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

 χ  1   =  (x + 1)   2 

  

 χ  2   = − ( x   4  + 2 x   3  + 2 x   2  + 2x + 1)

   
 χ  3   = − 10x ( x   2  + 1)

    χ  4   = 2x  (x + 1)   2   
 χ  5   = 16  x   2 

  

 χ  6   = −  ( x   2  + 1)   2 

  

 χ  7   =  ( x   2  + 1)   2 .

    (8)

(9)



82 IEEE Design&Test

General Interest

NGD analysis at very low frequency
One of natural particular frequency, which can 

be investigated for the NGD existence, is the lowest 
one or DC. The NGD analysis can be performed from 
the group delay expressed in (24). At very low fre-
quency, the reverse T-topology presents the follow-
ing group delay: 

 τ  (ω ≈ 0)  =   
π  Z  c   [4  x   2  −   ( x   2  − 1)    

2
 ] 
  ______________  

2  R  0    ω   0     ( x    2  − 1)    
2
 
   . 

We can emphasize that this expression is always 
positive for any parameters x and Zc. Therefore, the 
topology under study cannot behave as a low-pass 
NGD circuit.

NGD analysis at resonance frequency
The second particular frequency of the topology 

under study can be the resonance ω  =  ω 0  = π/(2τ). 
At this frequency, the group delay is shown as

 τ ( ω   0  )  =   − π  R  0     (x + 1)    2  ___________ 
 2  Z  c    ω   0   ( x   2  + 1) 

   . 

This group delay is unconditionally negative for any 
value of the topology parameters. Therefore, the 
circuit can behave as bandpass NGD function. The 
NGD center frequency is equal to    ω      =  ω  0   .

Design and test methodology of NGD circuit
The methodology to design and to test the NGD 

circuit must begin with the expected fabrication 
technology and the desired value of NGD at the 
center frequency. Then, we can follow the design 
guideline indicated by the flow chart of Figure 5 
until the NGD circuit prototype fabrication and test. 

The NGD design method can be divided into three 
successive phases.

• Phase 1: At the beginning of the design, the NGD 
function around the expected working frequency 
must be specified. Then, the analytical compu-
tation can be realized based on the ideal model 
of the S-parameters. Some parametric analyses 
can also be performed in this phase to check the 
better comprehension of influence of parameters 
constituting the NGD topology.

• Phase 2: In this intermediate step, the NGD engi-
neer must take care on the available technology 
for fabricating the NGD prototype. For example, in 
the present study as it will be explored in the next 
validation section, we will deal with microstrip 
technology to design and implemented our NGD 

Description of NGD analysis and  
NGD circuit design

It is worth emphasizing that still many efforts 
are needed to make the NGD engineering familiar 
to electronic and RF/microwave device designers. 
Similar to classical electronic circuits (filters, phase 
shifters, couplers, power dividers, etc.), the NGD 
engineering can be openly performed in a familiar 
manner. The two following paragraphs describe the 
way to analysis and the methodological design of 
the NGD circuit under investigation.

Frequency-dependent group delay
The phase shift associated to the transmission 

coefficient is defined by  ϕ (ω)  = ∠  S  21   (jω) .  We have

According to the circuit and system theory, the 
group delay can be derived from the transmission 
coefficient by the relation

 τ  (ω)  =   −∂ ϕ (ω) 
 _ ∂ ω   . 

Knowing the transmission phase introduced  
in (12), the reverse T-stub topology group delay 
can be calculated analytically from this previous 
expression.

Figure 4. Schematic of the topology shown in Figure 1 
with equivalent matrix blocks. 
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prototype. Therefore, in this step, the NGD circuit 
can be designed with the design and simulation 
tools (as in the present study, we will utilize with 
the RF and microwave circuit ADS designer and 
simulator from Keysight Technologies). The sim-
ulations are focused on the realistic effects on the 
NGD prototype. It consists of simulating and opti-
mizing the NGD circuit by taking into account the 
realistic effects as the TL widths and lengths. In 
this step, we can also add the extra interconnect 
lines as the input/output access lines, the “T” or 
“+” interconnects and also the substrate material 
parameters provided by the manufacturer.

• Phase 3: In this last phase, the NGD prototype 
must be fabricated from the circuit layout drawn 
from the optimized design performed in Phase 2. 
Acting as an RF and microwave circuit, the NGD 
pr ototype can be tested with a vector network 
analyzer (VNA). Before the tests, the VNA must 
be calibrated with consideration of the working 
frequency. The test must start with the S-parame-
ter measurements. Then, the group delay can be 
calculated from (12).

To verify more realistically the efficiency of the 
developed NGD theory, the proof-of-concept will be 
investigated in the next section. 

Design, simulation, and experimental 
validations

As proof-of-concept, NGD circuit was designed, 
simulated, fabricated, and tested to verify the rele-
vance of the theory established in the previous sec-
tion. The design process is implemented in a manner 
similar to that of the classical and familiar electronic 
analog circuits. All the simulation results presented 
in this article were obtained from simulations with 
the microwave electronic circuit designer and simu-
lator ADS from Keysight Technologies. The measure-
ments are performed with a VNA.

Parametric analysis
The proposed parametric analyses aim to predict 

the influences of the reverse T-stub parameters Z0, 
C, and θ on the NGD topology under study. To do 
this, three cases of S-parameter parametric simula-
tions from 1.5 to 2.5 GHz were performed by varying 
characteristic impedance Z0, coupling coefficient C 
and the physical lengths d. The group delay, trans-
mission, and reflection coefficient results are keenly 

mapped in cartography in function of both the CL 
and TL characteristics and the operation frequency.

Figure 5. Methodological flow chart of NGD circuit 
design and test. 

Figure 6. Parametric simulated results 
versus Z0 : (a) group delay, (b) S21, and (c) S11 
with fixed τ = 0.129 ns.
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It is noteworthy that the ideal circuit investigated 
in this section presents the same specifications as the 
FR4 substrate used to design and fabricate the proof of 
concept tested in the following section. Acting as an 
ideal configuration, the calculated results explored in 
the present subsection may differ from the electromag-
netic computations and measurements because of the 
TL characteristic impedance, effective permittivity 
and also the metallization skin effect. Those effects are 
not taken into account in our NGD theory.

Parametric analysis with respect to Z0

The present parametric analysis is dedicated to 
the influence of Z0 on the NGD aspect. As can be 
seen in Figure 6a–c, by varying Z0 from 81 to 54 Ω, 
the optimal GD decreases from −0.57 to −1.32 ns at 
the NGD center frequency. Then, S21 and S11 vary 
from −1.41 to −2.44 dB and from −18.75 to −12.96 dB, 
respectively.

Parametric analysis with respect to C
The present paragraph analyses the influence 

of coupling coefficient C varied from varies from  
−14 to −20 dB on the NGD performance by fixing  
Z0 = 64 Ω and τ = 0.129 ns. It can be underlined that 
the GD and S21 are improved with the increase with Z0. 
However, S11 is worst with the increase of characteris-
tic impedance. The S-parameter and GD versus C are  
simulated from 1.5 to 2.5 GHz. It is found in Figure 7 that 
the NGD center frequency which is of about 1.886 GHz 
is insensitive to C. However, the GD and S21 decrease 
proportionally with C. Then, reflection coefficient  
S11 (in the vicinity of center frequency) becomes better 
when C decreases.

Parametric analysis with respect to τ
The NGD circuit performance depends on time 

delay τ. Therefore, parametric analysis has been 
indirectly carried out with respect to τ  via microstrip 
lengths d summarized in Table 1. As seen in Figure 8a, 
when τ changes from 0.123 to 0.150 ns, the GD var-
ies from −0.90 to −1.07 ns. The NGD center frequency 

shifts significantly from approximately 1.98 and 1.65 
GHz. Furthermore, as depicted in Figure 8b and c, S21 
and S11 do not change significantly in the range of var-
ied τ. Therefore, to start the design, we can choose from 
the present parametric analysis, the T-stub appropriated 
physical length according to the designed NGD center 
frequency.

Figure 7. Parametric analyses of (a) GD,  
(b) S21, and (c) S11 in function of C with fixed  
Z0 ≈ 61.09 Ω and τ = 0.129 ns.

 
Table 1. Time delay and the associated microstrip line  
physical length.

Figure 8. Parametric analyses of (a) GD, 
(b) S21, and (c) S11 in function of τ.
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Experimental results
To validate experimentally the NGD func-

tion with the under-investigation reverse T-stub 
topology, the microstrip prototype design will be 
described in the next paragraph. Then, compari-
sons of results from simulations and measurements 
will be discussed.

Design description of tested reverse  
T-stub-based NGD prototype

To verify the rationality of the previously developed 
theory and parametric analyses, a proof-of-concept of 
NGD circuit was designed, fabricated, and measured. 
The prototype is a passive distributed circuit. This pro-
totype is implemented in fully distributed microstrip 

technology without using lossy lumped circuits. The 
NGD circuit prototype was realized on the FR4 sub-
strate presenting characteristics addressed in Table 2. 
Before the fabrication, the T-stub TLs and CLs were 
slightly optimized to reach more significant NGD val-
ues over low-attenuation losses. It should be empha-
sized that the TL connecting the access ports could 

Figure 9. Fabricated NGD circuit prototype 
(a) layout and (b) photograph.

Figure 10. Photograph of the reverse 
T-stub NGD prototype experimental setup.

Figure 11. (a) Group delay, (b) transmission, 
and (c) reflection coefficients of the  
fabricated NGD circuit shown in Figure 10b.

 
Table 2. NGD circuit prototype parameters.
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be neglected because of the well-matching effect and 
its time-delay notable small compared to the targeted 
NGD value. The final parameters are indicated in 
Table 2.

The TL and CL physical width w corresponds to  
characteristic impedance Z0 = 61.09 Ω. The TL and CL 
quarter wavelength (θ  = 90°) is set at the NGD center 
frequencies of about 1.89 GHz. The considered CLs have 
the same coupling coefficients C of about −17.83 dB.

The ADS design layout of the fabricated prototype 
is displayed in Figure 9a. The associated photograph 
is presented in Figure 9b which has a physical size  
42  mm × 87 mm.

Discussion on simulated and measured results
The NGD prototype was measured using a VNA 

provided by Rohde and Schwarz (ZNB 20, frequency 
band 100 kHz–20 GHz). The S-parameter measure-
ment experimental setup is shown in Figure 10.

 The comparative results between the calculations 
from (9), (10), and (13), simulations and measure-
ments are performed from 1.8 to 2 GHz as depicted 
in Figure 11:

• simulations with ADS tool represented by the 
“Sim.” legend plotted in black solid line;

• experimental tests and measurements repre-
sented by the “Meas.” legend plotted in red 
dashed line;

• ideal calculated results represented by the 
“Model” legend plotted in blue dotted line.

The modeled results are slightly shifted because of 
the substrate imperfection in the considered working 
frequency. As plotted in Figure 11a, the NGD optimal 
value is of about −0.8 ns in simulation against −1 ns 
in measurement. The NGD center frequency is of 
about 1.89 GHz. The slight differences between the 
GD calculated from (12), simulations and experi-
mental results, notably observed around the NGD 

center frequency is notably due to the substrate dis-
persion loss and also the metallization skin effect.  
As expected, this result proves the validity of the 
bandpass NGD function generated by the reverse 
T-stub topology introduced earlier in Figure 1. The 
NGD prototype has a bandwidth of about 20 MHz. 
Moreover, Figure 11b introduces that the designed 
NGD prototype ensures a very low attenuation loss 
only of about −1.7 dB in simulation and measurement 
around the center frequency. Additionally, as depicted 
in Figure 11c, the reflection coefficient is better than 
−15 dB within the NGD bandwidth.

Performance comparison
The comparison between the basic performances 

of the proposed NGD turtle topology and the existing 
ones available in the literature [13], [14], [18]–[20], 
[27] are summarized in Table 3. The comparison 
includes the NGD FoM defined in [19]. It is notewor-
thy that the introduced NGD topology presents the 
following advantages: 1) significant design flexibility; 
2) implemented with fully distributed elements with-
out lossy lumped component; 3) low signal attenua-
tion less than 1.7 dB; and 4) the reflection loss better 
than −15 dB without additional and external match-
ing networks in the NGD bandwidth.

An nGD theory of reverse T-stub shape inducing 
interbranch coupling effect is developed. The pro-
posed NGD topology is composed of fully passive 
distributed elements with three identical TLs and two 
identical CLs. The S-parameter model of the topology 
is established from ABCD- and Z-matrices. The NGD 
analysis that allows identifying the NGD existence 
condition is described.

The relevance of the NGD theory was approved 
by simulations and measurements. Parametric analy-
ses were conducted in function of the reverse T-stub 
physical and electrical characteristics. The NGD 

 
Table 3. Performance comparison (Y: yes, N: no).



87March/April 2021

IEEE Trans. Antennas Propag., vol. 51, no. 10,  

pp. 2619–2625, Oct. 2003.

 [5] O. F. Siddiqui et al., “Time-domain measurement of 

negative-index transmission-line metamaterials,” IEEE 

Trans. Microw. Theory Techn., vol. 52, no. 5,  

pp. 1449–1453, May 2004.

 [6] G. Chaudhary, Y. Jeong, and J. Lim, “Microstrip line 

negative group delay filters for microwave circuits,” 

IEEE Trans. Microw. Theory Techn., vol. 62, no. 2,  

pp. 234–243, Feb. 2014.

 [7] H. Choi et al., “A novel design for a dual-band negative 

group delay circuit,” IEEE Microw. Wireless Compon. 

Lett., vol. 21, no. 1, pp. 19–21, Jan. 2011.

 [8] C.-T.-M. Wu et al., “A dual-purpose reconfigurable 

negative group delay circuit based on distributed 

amplifiers,” IEEE Microw. Wireless Compon. Lett.,  

vol. 23, no. 11, pp. 593–595, Nov. 2013.

 [9] T. Zhang, R. Xu, and C.-T.-M. Wu, “Unconditionally stable 

non-foster element using active transversal-filter-based 

negative group delay circuit,” IEEE Microw. Wireless 

Compon. Lett., vol. 27, no. 10, pp. 921–923, Oct. 2017.

 [10] M. Zhu and C.-T. Michael Wu, “A tunable non-foster 

T-network loaded transmission line using distributed 

amplifier-based reconfigurable negative group delay 
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 [11] F. Wan et al., “The design method of the active 

negative group delay circuits based on a microwave 

amplifier and an RL-series network,” IEEE Access,  

vol. 6, pp. 33849–33858, Jun. 2018.

 [12] F. Wan et al., “Time-domain experimentation of NGD 
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 [13] G. Chaudhary and Y. Jeong, “Low signal-attenuation 

negative group-delay network topologies using 

coupled lines,” IEEE Trans. Microw. Theory Techn., vol. 
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negative group delay networks using coupled line 
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performance of the topology in function of elemen-
tary CLs and TLs characteristic impedance and cou-
pling coefficients and the operation frequency was 
cartographied.

More importantly, comparisons between the cal-
culated, simulated, and measured results are also dis-
cussed. As proof-of-concept, the test and validations 
were performed with an NGD circuit prototype designed 
and implemented in microstrip technology. An excel-
lent agreement between simulations and measure-
ments was observed. The reverse T-stub NGD prototype 
achieved an excellent performance compared with 
the literature [13], [14], [18]–[20]. Measured group 
delay value of −1 ns and transmission coefficient better  
than −2 dB were occurred at the center frequency of 
about 1.886 GHz.

The modeling methodology offers valuable 
information to the electronic designer, for instance 
exploring the sensitivity of the T-stub NGD system to 
input variability. 
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Editor’s notes:
This article introduces redundant design approaches for reversible circuits 
that have the ability to detect and tolerate single-bit fault without the need 
of conventional voting scheme. Experiments preformed show that the pro-
posed scheme reduces the gate cost on average with up to 28% as com-
pared with tri-modular redundant circuits.

—Said Hamdioui, Delft University of Technology

 Fault tolerance is the architectural attribute 
of a digital system that maintains proper functioning 
of a machine while encountering various kinds of 
failures. It facilitates the realization of explicit parts 
of a system that involve a higher degree of safety and 
critical problems [1]. The use of redundant circuits 
in collaboration with majority voter scheme is one 
of the effective methods to achieve fault tolerance 
in digital system design. The method provides fault-
free output at the cost of large number of gates and 
wires. In spite of having several advantages of this 
technique, some problems still exist. The worst situa-
tion can arise in majority voting when all the redun-
dant circuits produce faulty output.

Motivated by a variety of applications in several 
emerging technologies toward reduction of power 
consumption and sizes, reversible circuits (RCs) 
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have received significant 
attention since a decade. 
RCs have direct relation 
with quantum computa-
tion which are largely to 
loss of energy levels due 
to the phenomenon of 
quantum decoherence 
that cause single point 

failures [2]. In addition to the remarkable work in 
the field of testing, development of fault-tolerant 
designs are also finding grounds for these circuits 
[3]. The evolution commences from error correct-
ing codes generation, majority multiplexing, error 
correction for finite field using parity check, major-
ity voter scheme to recent Clifford+T quantum gate 
library [4]. Fault-tolerant redundant logic circuits 
in-hold lesser design complexity and has the abil-
ity of online repair and diagnose, however, it is not 
addressed in the literature for RCs.

Fault detection in parity preserving circuits
Parity preserving (PP) circuits have the capability 

to detect the faults occurred due to unusual change 
of bits in RCs. A number of testable design methodol-
ogies were presented in the past utilizing this charac-
teristics. Unfortunately, if PP gates or complex PP gate 
(CPPG) are used to design a circuit, the statement will 
not be true. CPPG, shown in Figure 1a, is built with a 
group of fundamental gates and considered as a single 
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gate (building block) in the circuit formation [5]. 

Parity preserved architectures ensures the detection 

of single-bit flip faults for such design methodology 

which produces PP circuits by the use of fundamental 

gates as presented in Figure 1b for example [6]–[8]. 

The scheme is based on the method of multiple con-

trolled Toffoli (MCT) gates placement either during 

design methodology or modification technique and 

provides full coverage of single-bit faults [9], [10]. PP 

circuits, however, provide only fault detection. How-

ever, they can also be used to design fault-tolerant cir-

cuit by further modifications.

Contribution
This article introduces a generalized architecture 

for designing fault-tolerant RCs that can be scalable up 

to N modular redundant circuits using parity preserva-

tion and generation technique. The designed circuit 

using this model can detect and tolerate single point 

failures by means of bit fault. The presented model 

also have ability to deal with the occurrence of worst 

situation with redundant logic when all adjacent cir-

cuits produce faulty output and have fault diagnosis 

and repair provisions. Nevertheless, efficient method-

ologies for designing testable RCs have been adopted 

which were found superior in terms of gates, quantum 

cost (QC), garbage output (GO), ancilla input (AI), 

and fault coverage [9], [10]. 

Proposed fault-tolerant model
The insight of the scheme is the development 

of PP circuits followed by the inclusion of a parity 

checker to form testable circuits (TCs). These cir-

cuits generate an error signal at the output during 

any single-bit faulty operations. This signal is utilized 

to design redundant circuits for fault tolerance.

Error signal generation
In an n wire PP RC shown in Figure 2a with inputs 

(I1, I2, … , In) and outputs (O1, O2, … ,On), parity 
checking can be achieved by cascading controlled 
NOT (CNOT) gates from each wire to a new wire 
before and after the complete circuit. Considering 
tin as a new test wire on which the parity checking 
has to be done for the formation of a TC, as shown in  
Figure 2b. The corresponding output of this wire is 
called as error signal (er) in this article and is given by

          er = (I ⊕ O) ⊕ tin  (1)

where I = (I1 ⊕ I2 ⊕ … ⊕ In) and O = (O1 ⊕O2 
⊕ … ⊕On). As RC is PP circuit, I ⊕ O = 0. This means 
that, for nonerroneous functionality of RC, er = tin.

The MCT gates placement methodology is uti-
lized for the realization of RC and are converted into 
respected testable cells (TCs) for the generation of 
error signal (er) [9], [10]. Considering a single-bit flip 
fault occurred at any level of the circuit. Each set (con-
taining two MCT gates) in TC design scheme is PP 
and the same parity information will be transferred 
to next level. Hence, the values at the output will be 
inverted in odd numbers. Considering O1 → O1, er 
will be inverted for faulty operations as calculated in

Figure 1. PP architectures: (a) CPPG circuit and (b) fundamental gates-
based circuit.

Figure 2. Conversion of RC into TC: 
(a) CPPG circuit and (b) fundamental 
gates-based circuit.
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er = [(I1 ⊕ I2 ⊕ … ⊕ In ) ⊕ (O1 ⊕ O2 ⊕ … ⊕ On )] ⊕ tin
= [O1 ⊕ O1] ⊕ tin = 1 ⊕ tin = tin. (2)

Hence, the logic behind the generation of error signal 
can be summarized as er = tin/tin, for nonfaulty/faulty 
operations of TC which is used to detect the occur-
rence of these faults in the circuit.

Fault tolerance
Depending on the required degree of accuracy of 

a circuit, multiple redundant TCs can be connected 
in parallel. The array of these TCs are cascaded with 
an and–or network to form a fault-tolerant circuit. 
Considering the following characteristics in a multi-
ple-input–single-output (MISO) TC for the designing 
fault-tolerant model:

· n input (I1, I2, … , In) including AIs and one test 
input Tin;

· one required output O and rest (n – 1) output 
are garbage;

· assigning Tin = 0 which implies er = 0 for non-
faulty and er = 1 for faulty operations.

Considering N number of TCs which are con-
nected in parallel to produce N redundant outputs 
(O1, O2, … ,ON ). The corresponding error signal pro-
duced by TCs are (er1, er2, … ,erN). GOs and constant 
input of all the building blocks are ignored. Each TC 
is cascaded with respective reversible and gates (and1, 
and2, … , andN). The outputs of these and gates are 
used as input to a reversible or gate which produces 
fault free output O, as depicted in Figure 3. The inputs 
to the and gates are the output of respective TCs, com-
plement of respective error signal (Ont1, Ont2, … ,OntN), 
error signals of N th TC and of all previous TCs. For 
instance, and1 has three inputs (C, O1, Ont1), and2 has 
four inputs (C, O2, er1, Ont2) and andN has (N + 2) inputs  
(C, ON, er1, er2, … , erN−1, OntN). Here, C is a con-
stant input for producing logical and operation 
using MCT gates. Hence, and1 is of size (3 × 3), 
and2 is of size (4 × 4) and andN is of size {(N + 2) × 
(N + 2)}. All the error signal output are also taken as 
the inputs to another and gate. The output of this gate is 
given by Tout = er1 · er2 · …· erN after ignoring AI and GO.

The important aspect behind the designing is 
to probe the final output of fault-tolerant MISO TC 
circuit to be nonfaulty for the true functioning of 
at least any one of the TCs. The final output O of 
proposed MISO TC circuit is given by the following 
equation:

O = OA1 + OA2 + … + OAN

= O1 · Ont1 + O2 · er1 · Ont2 + … + ON 

·er1 · er2 · … · erN–1 · OntN

= O1 · er1 + O2 · er1 · er2 + … + ON 

·er1 · er2 · … · erN–1 · erN. (3)

The error signal outputs will be er1 = 0 and er2 = 
er3 = … = erN = 1 for Tin = 0, when all the TCs pro-

duce faulty output except TC1. The final output can 

be calculated as O = O1 using (3), which is fault free 

output of TC1. Based on the functioning of MISO TC 

and utilizing (3), the functional and fault patterns for 

Trimodular redundant fault-tolerant circuit contain-

ing three inputs (I1, I2, I3) and one output TC (O) 

can be shown in Table 1. Here, (er1, er2, er3) are the 

three error signal outputs, which indicates the faulty/

nonfaulty behavior of respective TCs for Tin = 0.

Hence, the error signal output will be at logic 0 

when any one of the TCs is performing correct oper-

ation. The test output Tout = er1 · er2 · … · erN = 0. For 

the worst case when all the TCs are performing erro-

neous operations, er1 = er2 = … = erN = 1 which flips 

Tout to 1. Hence Tout will be 1 only when all TCs are 

in erroneous operations, else be 0. The provision for 

the inclusion of a register file can also be included 

on the wires of all the error signals to store the fault 

patterns of all the TCs. These patterns can be utilized 

for fault diagnosis and repair purposes.

Figure 3. Fault-tolerant MISO TC model.
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Fault-tolerant model for MIMO TC
The work is extended for the circuits which pro-

duces more than one output at a time. The number 
of outputs in a single TC will increases the design 
complexities as the number of NOT and will be equal 
to the multiple of number of redundant circuit and 
number of output of the TC. It will increase the gate 
cost as well as the QC which are the key metrics of 
any RC designs. Considering the following charac-
teristics for the designing of multiple input multiple 
output (MIMO) TC:

· n input (I1, I2, … , In) including AIs and one test 
input Tin;

· m required output (O1, O2, … , Om) and rest (n – m) 
 output are garbage;

· assigning Tin = 0, this implies, er = 0 for nonfaulty 
and er = 1 for faulty operations.

Considering N number of TCs are taken in 
parallel, which produce N redundant m output vec-
tors [(O11, O12, … ,O1m), (O21, O22, … , O2m), … , (ON1, 
ON2, … , ONm)]. The corresponding error signal of TCs 
are (er1, er2, … , erN). GOs and constant input of all 
the building blocks are ignored. All the outputs of 
each TC is cascaded with corresponding reversible 
and gates [(and11, and12, … , and1m), (and21, and22, … , 
and2m), … , (andN1, andN2, … , andNm)]. The outputs of 
these and gates are used as input to corresponding 
reversible or gates (or1, or2, … , orm) which produces 
fault free output (O1, O2, … , Om), as depicted in  
Figure 4. All the connections are similar to MISO TC, 
except (m × N  ) and gate arrays are used in place of 
single and gate and m or gates for the TCs. The inputs 
to the and gates arrays are the outputs of respective 
TCs, complement of corresponding error signals 
(Ont1, Ont2, … , OntN) and error signals of all previous 
TCs. The Oth

ANm output (output of and gates) from 
each and gate array are fed as input to Oth

m or gate. 
The m          th output of the circuit can be calculated using

Om =OA1m + OA2m + … + OANm

=O1m · Ont1 + O2m · er1 · Ont2 
  + … + ONm · er1 · er2 · … · erN−1 · OntN

=O1m · er1 + O2m · er1 · er2 
  + … + ONm · er1 · er2 · … · erN−1 · erN . (4)

For the nonerroneous functioning of any of the TC, 
the final output Om of fault-tolerant MIMO TC circuit 
is nonfaulty. All the error signal outputs are also taken 
as inputs to another and gate for the detection of worst 
case situation and a register file can also be added to 
store the fault patterns of N th TC. The functional and 
fault patterns for trimodular redundancy (TMR)−based 
fault-tolerant circuit for three inputs (I1, I2, I3) and three 
outputs (O1, O2, O3) TC is also shown in Table 2 when 
Tin = 0.

 
Table 1. Functional/fault pattern table of fault-tolerant MISO TC.

Figure 4. Fault-tolerant MIMO TC model.
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Features of proposed model
Based on the above explanations, the concluding 

features of fault-tolerant MISO and MIMO TC circuit 
models are listed as follows.

· The output(s) is nonfaulty, for true performance 
of at least any one of the TCs. 

· The operational preference of TCN−1 is higher 
than TCN during operations.

· The worst case, when all the TCs are performing 
faulty operations, can be detected.

· Fault detection in and–or network can be done 
by using PP structures of and or gates, then con-
structing separate TC for each array, as shown in 
Figure 5 [7], [9].

· Fault diagnosis of respective TC can also be 
achieved by examining the faulty patterns from 
register file.

Performance assessment
The performance of the proposed methodology 

is analyzed by its realization on a number of RCs 
and obtaining the effective cost measures. A com-
parison is also provided with the results of a best fit 
prior methodology on the same platform. Arbitrary 
RCs are converted into corresponding fault-tolerant 
version utilizing the three essential steps of the pro-
posed methodology.

· Design preserving circuit (RC) using fundamen-
tal Toffoli and Fredkin gates.

· Modify RC to form corresponding TC which pro-
duce an error signal during a single-bit faulty 
operation. MCT gates placement and cascading 
[9], [10] method is considered for the devel-
opment of TCs in the present case. The cir-
cuits are synthesized by creating a set of rules 
accordingly using transformation-based synthesis  
algorithm [11].

· Develop fault-tolerant circuits using redundant cir-
cuits in accordance with proposed conventions.

Final cost measures are calculated by creating 
Toffoli Fredkin cascade files and implementing on 
RC-viewer tool [12]. There are several proven meth-
odologies are provided for the development of TCs in 
the literature. In spite of the comparing the work with 
that fault-tolerant methodologies for the direct com-
parison, the most efficient TC design method in terms 
of cost metrics is considered for comparison [13].

Cost measures
Number of wires (n), gate count (GC), QC,  

GO, and AI are the major parameters which  
are considered in this correspondence. Gen-
eral equations to calculate these measures in  
accordance with the proposed model are given by

 
Table 2. Functional/fault pattern table of fault-tolerant MIMO TC.

Figure 5. Fault detection in and–or network.
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  nN = NnTC + m(2N – 1) + 1 (5)
GCN = NGCTC + (N – 1)nTC 

   + (2N – 1)m + N + 1 (6) 
GON = nN – m – 1 (7)

  AIN = nN – nv . (8)

where N is the number of redundant circuits are used, 
m is the number of required outputs of TC, and nv 
is the number of input variables, i.e., (nTC – AITC). 
Equation for QC is not provided as it does not follow 
linear relation when similar circuits are cascaded, 
the results may differ on different tools available for 
its calculation.

Brief review on TC designing
Numerous methodologies have been proposed 

which utilize the concept of parity preservation and 

generation for the detection of faults in RCs. The 

construction of TCs has been achieved using novel 

gates, original circuit modification and designing 

with built-in testability features [3]. TC using R1/R2, 

CTSG using online testable gate (OTG), dual rail I/O 

testable gates and modification using testable revers-

ible circuit (TRC) produces two complementary 

error signal outputs, respectively [14]–[17], which 

increase design complexities as well as operating 

costs. The method which utilizes the concept of 

modification of RC into modified testable cell (MTC) 

is only meant for PP gates [7]. Apart from our prior 

proposed methods [9], [10], extended Toffoli gates 

(ETGs)-based modification requires only double 

gates as presented in the original circuit to form cor-

responding TCs with single error signal output [13].

 
Table 3. Implementation results and comparison.
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Results and comparison
A set of benchmark circuits are taken for the 

experimentation of proposed method from one of 
the most reliable web pages for RCs [12]. RCs are 
designed and transformed into respective TCs, which 
are used to design respective fault-tolerant circuit 
for double modular redundancy (DMR) and TMR. 
Note that the MIMO model is applied for designing 
fault-tolerant circuits. For instance, the number of 
input variables (nv) in rd32 circuit is 3 and the num-
ber of required outputs (m) are 2.

After analyzing the prior work on TC designing, 
ETG-based method to design PP circuits is preferred 
and corresponding TCs for comparison. The imple-
mentation results are listed in Table 3, where num-
ber of wires, AIs, and GOs are not listed since they 
are same in both of the methodologies. These results 
are obtained without considering fault detection cir-
cuit for and–or network, and gates are implemented 
using MCT gates and or gates are implemented using 
Fredkin gates (3 × 3 MCF gates for simplicity). The 
sum of all the values listed in each column is cal-
culated and taken for the evaluation of the change 
in cost metrics in respective cases of TC, DMR, and 
TMR. Due to the fact that, there are two CNOT gates 
are used per gate for achieving testability in [13] 
whose total QC is 2. However in the present method, 
MCT gates are used which slightly increases the QC 
by 23%, 19%, and 18% in case of TC, DMR, and TMR 
circuits, respectively. But, an excellent reduction 
in gate cost by 28%, 23%, and 22% in respective TC, 
DMR, and TMR fault-tolerant circuits has been ana-
lyzed due to the use of two gates in [13] for testabil-
ity and the proposed work utilizes only one gate for 
the construction of TCs.

Parity Preservation and generation is one of the 
techniques of achieving testability in RCs as these 
circuits performs fully controllable and observable 
operations. Utilizing this technique, TCs are realized 
which facilitate nonfaulty/faulty information during 
circuit operation. These TCs are used to design a 
generalized architecture fault-tolerant RCs with the 
use of redundant logic. The operation of redundant 
circuits is governed by and–or network that has the 
capability to deal with the worst situation when all 
the circuits turned faulty. The model guarantees full 
coverage of single-bit faults and provides real-time 
operational behavior TCs. A number of circuits are 
realized using the proposed methodology where 

an excellent reduction is observed in the GC when 

compared to prior TC development methodologies. 

The reduction in test overheads by exploring new 

PP circuit design methodologies will be the primary 

objective for future extension of the work. 
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 The firsT ACM/IEEE Workshop on Machine 
Learning for CAD (MLCAD) was held on Septem-
ber 2–4, 2020 in Canmore, AB, Canada. The location 
at the entrance to Banff National Park maintained 
a long tradition of mountain locations for techni-
cal meetings (Figure 1). The workshop welcomed 
52 participants including eight graduate students. 
The program committee was cochaired by Hussam 
Amrouch of Karlsruhe Institute of Technology and 
Bei Yu of Chinese University of Hong Kong. Gen-
eral Chairs were Marilyn Wolf and Jörg Henkel. The 
program included 30 contributed presentations 
based on submissions to the program committee 
as well as five invited talks. The program included 
talks from both industry and academia; partici-
pants were based in Asia, Europe, and North Amer-
ica. The program provided time for in-depth dis-
cussion; topics included appropriate types of ML 
methods for various types of CAD problems and 
challenges associated with training data.

The second edition of MLCAD turned out to 
be quite different. Originally scheduled to be held 
physically in September in Iceland, it became 
apparent in the spring of 2020 that this option was 
not realistic any more. Initially, it was postponed 
by two months to November, hoping that by then 
travel options would be available again. In May, it 
was decided that an online version was the only 

realistic option (Figure 2). At that time, ICCAD 
was still planning on a physical conference, so a 
“Highlights of MLCAD” physical meeting as an 
ICCAD Thursday workshop was planned, to enable 
physical meeting which the EC considered to be 
important for interaction among MLCAD research-
ers. The very helpful support of ICCAD is gratefully 
acknowledged. However, ICCAD went virtual as 
well, so that plan was dropped.

Various options were considered for con-
ducting MLCAD virtually. The usual well-known 
problems had to be dealt with. Discussions with 
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Figure 1. Impressions from the First ACM/IEEE MLCAD 
Workshop in Banff.
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participants in earlier virtual conferences helped 
us guide our decisions, as did an ACM Best Prac-
tices report on virtual conferences and a virtual 
meeting of all SIGDA-sponsored conferences. In the 
end, we decided to extend MLCAD into an entire 
week (Nov. 16–20, 2020), with roughly 3 hours of 
the live program every day. Talks for contributed 
articles were prerecorded. The ACM Digital Library 
turned out to be an excellent choice for hosting 
not only MLCAD articles, but also the prerecorded 
videos. The live program each day was weighted 
toward invited keynote and plenary talks, as well as 
a panel on the final day. Seventy-five minutes were 
dedicated to contributed articles each day. Authors 
would present live highlights of their research for 
5 minutes, followed directly by discussion. Zoom 
was used for the live presentations. Discussion 
was a mixture of chat-based question (using both 
Zoom chat as well as a dedicated MLCAD forum 
we set up in Slack) and questions directly asked 
orally. Four days of the MLCAD week were focused 
on Pacific Time, as most invited speakers came 
from this region, and contributed articles were also 
dominated by U.S. 7–10 A.M. PST worked well for 
the U.S. and Europe, but Asia participation suffered. 

We specifically did conduct one day on a different 
schedule (morning in Asia, afternoon/evening in 
the U.S.). It turned out that this arrangement was 
not as successful. It effectively shut out Europe 
(midnight—3 A.M.), and being early afternoon in 
Pacific time zone, may have interfered with regular 
meetings which attendees were involved with in 
their companies or universities. Attendance on this 
day turned out to be lower compared to other days 
by about one-third. Overall, discussions were quite 
lively, and a lot of positive feedback was received 
both on the contents of the workshop as well as 
the logistical arrangements.

The workshop featured four keynote and four 
plenary presentations, mostly from a broad range of 
industrial companies (Cadence, Huawei, Infineon, 
Nvidia, Qualcomm, Synopsys, and Xilinx). The open-
ing keynote by Andrew Kahng of UCSD explored the 
relation of learning, optimization, and scaling in the 
context of MLCAD. It attracted a lot of discussion. On 
the final day, a panel with mixed industry and aca-
demic representation pondered the state and future 
of MLCAD.

A total of 26 contributed articles was featured 
in the program. The accepted articles underwent 

Figure 2. The Second ACM/IEEE MLCAD Workshop, virtual.



99March/April 2021

 Direct questions and comments about this article 
to Jörg Henkel, Karlsruhe Institute of Technology, 
76131 Karlsruhe, Germany; henkel@kit.edu.

a rigorous review by an expert Technical Program 
Committee of 32 researchers, requiring at least three 
reviews per article. The contributed articles were 
dominated by North America and Europe, with 16 
and 8 articles, respectively. Article submissions dou-
bled compared to the 2019 edition of the workshop.

Registration more than doubled as well, to a 
total of 141 registered participants. Most sessions 
were attended by 70–90 attendees at any time. The 
available expertise resulted in substantial and lively 
discussions. Attendee demographics were similar to 
contributed articles—dominated by the U.S. partic-
ipation, but a very strong showing from Europe as 
well, especially from Germany.

MLCAD’2020 also featured a “virtual social event” 
every day. Jian-Jia Chen (Technical University of 
Dortmund) set up some environments in the gather.
town system. These allowed participants to interact 
in a manner somewhat resembling a physical social 
event. Participants explored this option and it did 
result in some nice conversations, but such a virtual 

social event cannot yet match the level of interac-
tion which we expect from physical social events. 
Certainly, this is also impacted simply by the fact that 
many participants in a virtual workshop will have 
their next regular meetings scheduled right after the 
workshop, whereas in a physical setting, they are 
actually away from their offices for some days.

The proceedings of MLCAD’2020 are availa-
ble in both ACM Digital Library and IEEExplore. 
Recordings of most invited talks have been made 
available in a YouTube channel as shown in the 
figure (see the workshop website at mlcad.itec.kit.
edu for details). 
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Recap of the 39th Edition of the 
International Conference on Computer-
Aided Design (ICCAD 2020)

 The InTernaTIonal ConferenCe on Com-
puter-Aided Design (ICCAD) is jointly sponsored by 
IEEE and ACM, and it is the premier forum to explore 
emerging technology challenges in electronic design 
automation, present leading-edge R&D solutions, 
and identify future roadmaps for design automation 
research areas.

The majority of the past 38 editions of the ICCAD 
were hosted in California, either in the bay area or 
in southern California such as San Diego or Irvine. 
Recently, the executive committee also tried to 
explore other locations such as Austin or Denver. 
Unfortunately, 2020’s edition is a special one: owing 
to the global COVID-19 pandemic, many conferences 
were forced to make the event work in the online 
world. Without exception, the ICCAD 2020 Execu-
tive Committee also decided to move forward with a 
virtual conference due to the continued uncertainty 
surrounding the COVID-19 situation.

Nevertheless, we were very excited to test out 
this new online edition for the first time in ICCAD’s 
39-year history. Even though the virtual events lack 
the kind of interpersonal communications attendees 
get from in-person events, with industry sponsorship 
and much lower expense due to the virtual platform, 
we may offer a much lower registration fee to the 
attendees, and with no travel overheads, it can boost 
the number of participants. Furthermore, a carefully 
tuned schedule with a virtual platform can make it a 

true “global” event for anyone around the world to 
attend ICCAD.

The members of the executive committee, the 
technical program committee, and numerous vol-
unteers have spent several months preparing an 
exciting program. Despite the global pandemic, we 
have a record-high in terms of the number of regular 
article submissions, with 471 regular articles submit-
ted for review by our technical program committee, 
an almost 20% increase compared to last year’s 394 
submissions. Submissions in hardware security and 
neural networks were particularly popular; however, 
traditional EDA topics such as system design, physi-
cal design, verification/validation, and logic synthesis 
were also well represented. The submissions were 
divided into 17 tracks and reviewed by 144 outstand-
ing technical program committee members from 
both industry and academia worldwide. For the first 
time, the TPC meeting was held online without com-
promising the quality of the double-blind review pro-
cess. Finally, the program committee has selected 127 
articles spreading over 35 sessions on diverse topics. 
We also had a record number of special session pro-
posals submitted to ICCAD this year. Altogether, we 
had 11 special sessions and two embedded tutorials 
on topics that complement the regular sessions.

The committee carefully planned ICCAD’s first-
ever virtual conference. With generous industry 
sponsorship from Alibaba, Cadence, Synopsys, and 
SMARCO, we were able to offer more than a 10× 
reduction in registration rate compared to previous 
ICCAD conferences (for example, $50 for regular 
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rate and $25 for student rate). Presenters also have 
prerecorded video uploaded before the conference, 
so that the live presentation can be much shorter, 
enabling a modified conference schedule to accom-
modate various time zones as much as possible. All 
these efforts helped a huge boost of the registered 
attendees—compared to the previous year’s ~400 
attendees, and we ended up with approximately 900 
attendees for the first-ever virtual ICCAD—more than 
double with respect to any previous ICCAD.

Two best article awards were presented at the 
opening ceremony. In the “front-end” category, Sujit 
Kumar Muduli, Gourav Takhar, and Pramod Sub-
ramanayan were recognized for their article titled 
“HyperFuzzing for SoC Security Validation.” The 
“backend” best article award went to Adam Issa, 
Valeriy Sukharev, and Farid N. Najm for work pre-
sented in their article “Electromigration Checking 
Using a Stochastic Effective Current Model.”

We were delighted to host several distinguished 
keynote speakers: the Monday morning keynote on AI 
for enterprises was delivered by IBM Fellow Dr. Ruchir 
Puri. On Tuesday, Professor Birgit Vogel-Heuser from 
the Technical University of Munich presented the 
IEEE CEDA Luncheon Distinguished Lecture on 
Cyber Physical Systems. Finally, Professor Yao-Wen 
Chang from National Taiwan University presented 
the Wednesday keynote on EDA for More-Moore and 
More-than-Moore Designs.

On Thursday, we have five interesting workshops 
planned, on a variety of both new and established top-
ics. Some of these workshops are long-time staples of 
ICCAD, while others test the waters for the first time. 
Additionally, a workshop addressing system-level inter-
connect problems is further colocated with ICCAD.

Once again, ICCAD promises to be an ultimate desti-
nation for those working on cutting-edge EDA research. 
I would like to thank the organizing committee and 
program committee members, the authors and speak-
ers, as well as attendees from all around the world, to 
make this first-ever virtual ICCAD event a great and 
memorable one. Finally, we are grateful to our ICCAD 
2020 sponsors and numerous supporters for making 
this year’s conference another successful event. 

hopefully, The pandemIC will be over in 2021, 
and based on that assumption, the next ICCAD will 
be the first-ever edition to be held outside of U.S., tak-
ing place in Munich, Germany, from November 1 to 
4, 2021. The executive committee is excited to locate 
ICCAD for the first time in Europe. See http://www.
iccad.com/ for more details. Once again, ICCAD 
promises to be an ultimate destination for those 
working on cutting-edge EDA research. We hope to 
see you in Munich in November! 

 Direct questions and comments about this article 
to Yuan Xie, ECE Department, University of California 
at Santa Barbara (UCSB), Santa Barbara, CA 93106 
USA; yuanxie@ucsb.edu.
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TTTC News
The TTTC website always lists the latest features 

and information for its visitors! To find out more, 
please visit the website at http://www.ieee-tttc.org/.

PAST TTTC EVENTS
The IEEE International Test Conference 
(ITC 2020)
November 3–5, 2020
Washington, DC, USA—Virtual Conference
http://www.itctestweek.org/about-itc/

ITC is the world’s premier venue dedicated to 
the electronic test of devices, boards, and systems— 
covering the complete cycle from design verifica-
tion, design-for-test, design-for-manufacturing, silicon 
debug, manufacturing test, system test, diagnosis, reli-
ability and failure analysis, and back to process and 
design improvement. At ITC, design, test, and yield 
professionals can confront challenges faced by the 
industry and learn how these challenges are being 
addressed by the combined efforts of academia, 
design tool and equipment suppliers, designers, and 
test engineers. ITC, the cornerstone of the test week 
event, offers a wide variety of technical activities tar-
geted at test and design theoreticians and practition-
ers, including formal paper sessions, tutorials, panel 
sessions, case studies, invited lectures, commercial 
exhibits and presentations, and a host of ancillary 
professional meetings.

The 24th Design, Automation, and Test in 
Europe (DATE) Conference
February 1–5, 2021
Grenoble, France
https://www.date-conference.com/

The 24th DATE conference and exhibition is 
the main European event bringing together design-

ers and design automation users, researchers and 
 vendors, as well as specialists in the design, test, 
and manufacturing of electronic circuits and sys-
tems hardware and software. DATE puts a strong 
emphasis on both technology and systems, covering 
ICs/ SoCs, reconfigurable hardware and embedded 
systems, as well as embedded software. The five-day 
event consists of a conference with plenary invited 
papers, regular papers, panels, hot-topic sessions, 
tutorials, workshops, special focus days, and a track 
for executives. The scientific conference is comple-
mented by a commercial exhibition showing the 
state of the art in design and test tools, methodol-
ogies, IP and design services, reconfigurable and 
other hardware platforms, embedded software, and 
(industrial) design experiences from different appli-
cation domains, such as automotive, wireless, tele-
com, and multimedia applications. The organization 
of user group meetings, fringe meetings, a univer-
sity booth, a PhD forum, vendor presentations, and 
social events offers a wide variety of extra opportu-
nities to meet and exchange information on relevant 
issues for the design automation, design, and test 
communities. Special space will also be reserved for 
EU-funded projects to show their results.

UPCOMING TTTC EVENTS
The IEEE VLSI Test Symposium
April 25–28, 2021—Virtual Live Event
http://tttc-vts.org/public_html/new/2021/

The IEEE VLSI Test Symposium (VTS) explores 
emerging trends and novel concepts in testing, 
debug, and repair of microelectronic circuits and 
systems.

The VTS Program Committee invites original, 
unpublished paper submissions for VTS 2021. Pro-
posals for innovative practices and special session 
tracks are also invited. Paper submissions should 
be complete manuscripts, up to six pages (inclu-
sive of figures, tables, and bibliography) in a stand-
ard IEEE two-column format; papers exceeding the 
page limit will be returned without review. Authors 
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BECOME A TTTC MEMBER
For more details and free membership, browse the 
TTTC web page: http://tab.computer.org/tttc.

• CONTRIBUTIONS TO THIS NEWSLETTER: Send 
contributions to Theocharis (Theo) Theocharides, 
Department of Electrical and Computer Engineer-
ing, University of Cyprus, 75 Kallipoleos Avenue, 
PO Box 20537, Nicosia 1678, Cyprus; ttheocha-
rides@ucy.ac.cy. For more information, see the 
TTTC web page: http://tab.computer.org/tttc.

should clearly explain the significance of the work, 
highlight novel features, and describe its current 
status. On the title page, please include author 
name(s) and affiliation(s), and the mailing address, 
phone number, and e-mail address of the contact 
author. A 50-word abstract and five keywords iden-
tifying the topic area are also required.

The 2021 edition of VTS will be an online vir-
tual interactive live event. The program includes 
keynotes, scientific paper presentations, short 
industrial application paper presentations, special 
sessions, and innovative practices sessions.

The 25th IEEE European Test Symposium 
(ETS’20)
May 24–28, 2021
Belgium—Virtual Live Event
http://ets2021.eu/

The IEEE European Test Symposium (ETS) is 
Europe’s premier forum dedicated to presenting and 
discussing scientific results, emerging ideas, applica-
tions, hot topics, and new trends in the area of elec-
tronic-based circuits and system testing, reliability, 
security, and validation.

In 2021, ETS will be organized virtually online. 
The symposium is organized by KU Leuven and 
IMEC that cosponsor the event jointly with the 
IEEE Council on Electronic Design Automation 
(CEDA).

The program includes excellent keynotes, sci-
entific papers, and highlights from the industry. In 
addition to regular paper submissions, ETS offers 

a track for informal contributions dedicated to 
early hot ideas and relevant case studies as well 
as a PhD forum. A Test Spring School and Fringe 
Workshops will be organized in conjunction 
with ETS’21.

NEWSLETTER EDITOR’S INVITATION
I would appreciate input and suggestions about 

the newsletter from the test community. Please for-
ward your ideas, contributions, and information on 
awards, conferences, and workshops to Theocharis 
(Theo) Theocharides, Department of Electrical 
and Computer Engineering, University of Cyprus, 
75 Kallipoleos Avenue, PO Box 20537, Nicosia 1678, 
Cyprus; ttheocharides@ucy.ac.cy.

Theo Theocharides
Editor, TTTC Newsletter
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The Last Byte

 the very theme of this special issue of 
Design&Test, open-source EDA, resonates with me.

Thirty years ago or so, many large vertically 
integrated electronics companies had internal EDA 
departments. They created a lot of innovative tools 
and algorithms that designers use even today, driven 
by the advanced ICs used in their products. I worked 
in this environment.

Although the EDA tools these divisions created 
were proprietary, they were the open source for 
those inside the company with a need to know. As 
mentioned in the Guest Editors’ Introduction, being 
able to build on an already created infrastructure 
speeds the development of new techniques. I built 
a Fault simulator that used C models instead of just 
gates from an excellent and well-documented logic 
simulator someone else had done, and a colleague 
added a new Fault model to our test generator.

But I also learned some of the pitfalls of this envi-
ronment. These should be considered for a success-
ful open-source EDA infrastructure.

Open-source EDA has two uses. One, as men-
tioned above, is as a base for researching new algo-
rithms. The second, also mentioned in the Guest 
Editors’ Introduction and the articles in this issue, is 
as a design environment for academic research in 
design and EDA.

A tool that is part of a design environment must 
be stable and must be powerful enough to handle 
the designs it will see. Both can be difficult. Those 
who fund research want to see innovation. Will they 
pay for maintenance? Also, doing maintenance does 
not fit in well with academia. Students do not stay all 
that long, and tool maintenance is not a good thesis 
topic, though it might make one quite employable. 

Then there is the problem of making the tool 
capable of handling real designs. The DFT tool Fault, 
described in one of the articles in this issue, is an 
excellent start but not powerful enough to handle 
anything but benchmarks. It takes a long time to get a 
tool ready for industrial-strength designs. Do funding 
agencies (and students) have the patience for this?

Another issue is how to incorporate innovations 
into a stable toolset. While the design database men-
tioned in the Introduction should help, tools often 
interact in unexpected ways. A suite of EDA tools 
must be managed, whether open source or proprie-
tary. The product manager who approves or denies 
requests for changes may be annoying to developers 
and even some customers, but without them chaos 
can ensue. Coordinating tools in a suite developed 
in many different universities on unsynchronized 
schedules will be challenging.

None of these issues make open-source EDA 
a bad idea, but I’d recommend that research con-
centrate on the hard problems, not problems that 
commercial tool vendors have already solved. This 
means that developers of open-source EDA need to 
understand the capabilities of commercial EDA. Be 
as familiar with EDA vendor websites as you are with 
IEEE Transactions on CAD. Ask vendors for copies 
of manuals. Visit exhibitors at DAC and ITC, either 
virtual or physical.

And EDA vendors, visit universities and tell them 
what your dream list is: capabilities you want to 
include but have no idea of how to implement.

And best wishes to those working on open-source 
EDA. If I were back in grad school, that’s where 
I’d be. 

 Direct questions and comments about this article 
to Scott Davidson; davidson.scott687@gmail.com; 
Twitter: @scottd687.

The Road to Open-Source EDA
Scott Davidson
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