

Copublished by the IEEE Council

on Electronic Design Automation,

the IEEE Circuits and Systems

Society, the IEEE Solid-State

 Circuits Society, and the Test

Technology Technical Council

March/April 2021
Volume 38 Number 2

 8 ALIGN: A System for
Automating Analog

Layout
Tonmoy Dhar, Kishor Kunal, Yaguang Li,
Meghna Madhusudan, Jitesh Poojary,
Arvind K. Sharma, Wenbin Xu,
Steven M. Burns, Ramesh Harjani, Jiang Hu ,
Desmond A. Kirkpatrick, Parijat Mukherjee,
Soner Yaldiz, and Sachin S. Sapatnekar

 19 MAGICAL: An Open-
Source Fully Automated

Analog IC Layout
System from Netlist to GDSII
Hao Chen, Mingjie Liu, Biying Xu,
Keren Zhu, Xiyuan Tang, Shaolan Li,
Yibo Lin, Nan Sun, and David Z. Pan

 27 An Open-Source EDA
Flow for Asynchronous Logic

Samira Ataei, Wenmian Hua, Yihang Yang,
Rajit Manohar, Yi-Shan Lu, Jiayuan He,
Sepideh Maleki, and Keshav Pingali

 38 Real Silicon Using
Open-Source EDA

R.Timothy Edwards, Mohamed Shalan,
and Mohamed Kassem

 45 Fault: Open-Source
EDA’s Missing DFT

Toolchain
Manar Abdelatty, Mohamed Gaber,
and Mohamed Shalan

 53 P yH2: Using PyMTL3 to
Create Productive and

Open-Source Hardware
Testing Methodologies
Shunning Jiang, Yanghui Ou, Peitian Pan,
Kaishuo Cheng, Yixiao Zhang, and
Christopher Batten

78

89

Design of Shape
Stub-Based Negative

Group Delay Circuit
Fayu Wan, Ningdong Li, Blaise Ravelo,
Wenceslas Rahajandraibe, and
Sébastien Lalléchère

Copublished by the IEEE Council

on Electronic Design Automation,

the IEEE Circuits and Systems

Society, the IEEE Solid-State

 Circuits Society, and the Test

Technology Technical Council

March/April 2021
Volume 38 Number 2

 8 ALIGN: A System for
Automating Analog

Layout
Tonmoy Dhar, Kishor Kunal, Yaguang Li,
Meghna Madhusudan, Jitesh Poojary,
Arvind K. Sharma, Wenbin Xu,
Steven M. Burns, Ramesh Harjani, Jiang Hu ,
Desmond A. Kirkpatrick, Parijat Mukherjee,
Soner Yaldiz, and Sachin S. Sapatnekar

 19 MAGICAL: An Open-
Source Fully Automated

Analog IC Layout
System from Netlist to GDSII
Hao Chen, Mingjie Liu, Biying Xu,
Keren Zhu, Xiyuan Tang, Shaolan Li,
Yibo Lin, Nan Sun, and David Z. Pan

 27 An Open-Source EDA
Flow for Asynchronous Logic

Samira Ataei, Wenmian Hua, Yihang Yang,
Rajit Manohar, Yi-Shan Lu, Jiayuan He,
Sepideh Maleki, and Keshav Pingali

 38 Real Silicon Using
Open-Source EDA

R.Timothy Edwards, Mohamed Shalan,
and Mohamed Kassem

 45 Fault: Open-Source
EDA’s Missing DFT

Toolchain
Manar Abdelatty, Mohamed Gaber,
and Mohamed Shalan

 53 P yH2: Using PyMTL3 to
Create Productive and

Open-Source Hardware
Testing Methodologies
Shunning Jiang, Yanghui Ou, Peitian Pan,
Kaishuo Cheng, Yixiao Zhang, and
Christopher Batten

78

89

Design of =|= Shape
Stub-Based Negative

Group Delay Circuit
Fayu Wan, Ningdong Li, Blaise Ravelo,
Wenceslas Rahajandraibe, and
Sébastien Lalléchère

Design of Single-Bit Fault-
Tolerant Reversible Circuits

Hari M. Gaur, Ashutosh K. Singh,
Anand Mohan, Masahiro Fujita, and
Dhiraj K. Pradhan

ISSN: 2168-2356

Special Issue

General Interest

 5 Guest Editors’
Introduction: The

Resurgence of Open-
Source EDA Technology
Sherief Reda, Leon Stok, and
Pierre-Emmanuel Gaillardon

 62 OpenTimer v2: A Parallel
Incremental Timing

Analysis Engine
Tsung-Wei Huang, Chun-Xun Lin,
and Martin D. F. Wong

 69 CATNAP-Sim:
A Comprehensive

Exploration and a
Nonvolatile Processor
Simulator for Energy
Harvesting Systems
Ali Hoseinghorban, Mohammad Abbasinia,
Ali Paridari, and Alireza Ejlali

Design of Single-Bit Fault-
Tolerant Reversible Circuits

Hari M. Gaur, Ashutosh K. Singh,
Anand Mohan, Masahiro Fujita, and
Dhiraj K. Pradhan

ISSN: 2168-2356

Special Issue

General Interest

 5 Guest Editors’
Introduction: The

Resurgence of Open-
Source EDA Technology
Sherief Reda, Leon Stok, and
Pierre-Emmanuel Gaillardon

 62 OpenTimer v2: A Parallel
Incremental Timing

Analysis Engine
Tsung-Wei Huang, Chun-Xun Lin,
and Martin D. F. Wong

 69 CATNAP-Sim:
A Comprehensive

Exploration and a
Nonvolatile Processor
Simulator for Energy
Harvesting Systems
Ali Hoseinghorban, Mohammad Abbasinia,
Ali Paridari, and Alireza Ejlali

http://dx.doi.org./10.1109/MDAT.2020.3042177
http://dx.doi.org./10.1109/MDAT.2020.3042177
http://dx.doi.org./10.1109/MDAT.2020.3042177
http://dx.doi.org./10.1109/MDAT.2020.3042177
http://dx.doi.org./10.1109/MDAT.2020.3024153
http://dx.doi.org./10.1109/MDAT.2020.3024153
http://dx.doi.org./10.1109/MDAT.2020.3024153
http://dx.doi.org./10.1109/MDAT.2020.3024153
http://dx.doi.org./10.1109/MDAT.2020.3024153
http://dx.doi.org./10.1109/MDAT.2021.3051334
http://dx.doi.org./10.1109/MDAT.2021.3051334
http://dx.doi.org./10.1109/MDAT.2021.3051334
http://dx.doi.org./10.1109/MDAT.2021.3050000
http://dx.doi.org./10.1109/MDAT.2021.3050000
http://dx.doi.org./10.1109/MDAT.2021.3050000
http://dx.doi.org./10.1109/MDAT.2021.3051850
http://dx.doi.org./10.1109/MDAT.2021.3051850
http://dx.doi.org./10.1109/MDAT.2021.3051850
http://dx.doi.org./10.1109/MDAT.2021.3051850
http://dx.doi.org./10.1109/MDAT.2020.3024144
http://dx.doi.org./10.1109/MDAT.2020.3024144
http://dx.doi.org./10.1109/MDAT.2020.3024144
http://dx.doi.org./10.1109/MDAT.2020.3024144
http://dx.doi.org./10.1109/MDAT.2020.3024144
http://dx.doi.org./10.1109/MDAT.2020.3002149
http://dx.doi.org./10.1109/MDAT.2020.3002149
http://dx.doi.org./10.1109/MDAT.2020.3002149
http://dx.doi.org./10.1109/MDAT.2020.3002149
http://dx.doi.org./10.1109/MDAT.2020.3006808
http://dx.doi.org./10.1109/MDAT.2020.3006808
http://dx.doi.org./10.1109/MDAT.2020.3006808
http://dx.doi.org./10.1109/MDAT.2020.3038851
http://dx.doi.org./10.1109/MDAT.2020.3038851
http://dx.doi.org./10.1109/MDAT.2020.3038851
http://dx.doi.org./10.1109/MDAT.2020.3038851
http://dx.doi.org./10.1109/MDAT.2020.3038851
http://dx.doi.org./10.1109/MDAT.2021.3049177
http://dx.doi.org./10.1109/MDAT.2021.3049177
http://dx.doi.org./10.1109/MDAT.2021.3049177
http://dx.doi.org./10.1109/MDAT.2021.3049177
http://dx.doi.org./10.1109/MDAT.2021.3049176
http://dx.doi.org./10.1109/MDAT.2021.3049176
http://dx.doi.org./10.1109/MDAT.2021.3049176
http://dx.doi.org./10.1109/MDAT.2021.3049176
http://dx.doi.org./10.1109/MDAT.2021.3049176
http://dx.doi.org./10.1109/MDAT.2021.3049176
http://dx.doi.org./10.1109/MDAT.2021.3049176

DEPARTMENTS
 From the EIC
 4 Open-Source Electronic

Design Automation (EDA)
Tools

 Jörg Henkel

 Conference Reports
 97 Report on First and Second

ACM/IEEE Workshop on
Machine Learning for CAD
(MLCAD)

 Marilyn Wolf, Jörg Henkel, Raviv Gal,
and Ulf Schlichtmann

 100 Recap of the 39th Edition of the
International Conference on
Computer-Aided Design (ICCAD
2020)

 Yuan Xie

 102 TTTC Newsletter

 The Last Byte
 104 The Road to Open-Source EDA
 Scott Davidson

Cover design by Alexander Torres

http://dx.doi.org./10.1109/MDAT.2021.3066119
http://dx.doi.org./10.1109/MDAT.2021.3066119
http://dx.doi.org./10.1109/MDAT.2021.3066119
http://dx.doi.org./10.1109/MDAT.2021.3066137
http://dx.doi.org./10.1109/MDAT.2021.3066137
http://dx.doi.org./10.1109/MDAT.2021.3066137
http://dx.doi.org./10.1109/MDAT.2021.3066137
http://dx.doi.org./10.1109/MDAT.2021.3051483
http://dx.doi.org./10.1109/MDAT.2021.3051483
http://dx.doi.org./10.1109/MDAT.2021.3051483
http://dx.doi.org./10.1109/MDAT.2021.3051483
http://dx.doi.org./10.1109/MDAT.2021.3052369
http://dx.doi.org./10.1109/MDAT.2021.3053219

2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test4

Open-Source Electronic
Design Automation (EDA)
Tools

 Open-sOurce eda has become a major
endeavor in the EDA community as it promises a
variety of advances, especially with respect to com-
mon infrastructures such as internal representations
and databases, as well as interoperability of tools.
Its success is also due to eco-systems such as RISCV,
Chips Alliance, and Free Silicon Foundation. It
is, therefore, the right time to be covered by IEEE
Design&Test through our guest editors Sherief Reda,
Pierre-Emmanuel Gaillardon, and Leon Stok. The
special issue is structured into four articles covering
entire design flows as well as further four articles
focusing on specific tools. Thanks to the guest edi-
tors for this special issue.

In our General Interest section, we have two
articles. The article titled “Design of | Shape Stub-
Based Negative Group Delay Circuit” by Wan et al.
presents a type of negative group delay (NGD) cir-
cuit based on transmission line resonators.

The second General Interest article titled “Design
of Single-Bit Fault-Tolerant Reversible Circuits” by

Gaur et al. introduces a generalized architecture for
designing fault-tolerant reversible circuits.

ACM/IEEE MLCAD is a new workshop on
Machine Learning for CAD. The report covers the
first edition from 2019 held in Banff and the second
edition from 2020 held in a virtual form. Thanks to
the general chairs for the report.

The ACM/IEEE 39th International Conference on
Computer-Aided Design (ICCAD 2020) took place
as a virtual event. Thanks to Yuan Xie, the General
Chair, for his conference report.

And thanks to Massimo Poncino, our Conference
Reports editor, for acquiring the reports.

As always, last but not least, thanks to Scott
Davidson for The Last Byte titled “The Road to Open-
Source EDA.”

Enjoy reading!

Digital Object Identifier 10.1109/MDAT.2021.3066119

Date of current version: 8 April 2021.

Jörg Henkel
Editor-in-Chief
IEEE Design&Test

52168-2356/21©2021 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2021

Guest Editors’
Introduction: The
Resurgence of Open-
Source EDA Technology

 In the 1980s, the academic community pro-
duced several very high-quality electronic design
automation (EDA) tools that spawned the EDA
industry. Tools such as Spice [1], Espresso [2],
and SIS [3] became the foundation of EDA com-
panies. Open-source tools enable rapid innova-
tion and create an ecosystem for scientific devel-
opment. In recent years, the cost and difficulty
involved in the design of integrated circuits (ICs)
in advanced nodes have stifled hardware design
innovation and have raised unprecedented barri-
ers to bring new design ideas to the marketplace.
Unlike the thriving software community, which
enjoys a large number of open-source operating
systems, compilers, libraries, and applications,
the hardware community lacks such a modern
ecosystem. With the advent of open silicon IP
ecosystems, such as RISCV, Chips Alliance, and
Free Silicon Foundation, the time has come to
reinvigorate the open-source movement in EDA
tools. Recent programs from governmental agen-
cies aim to jump-start the development of open-
source EDA tools to reduce the cost and turna-
round time of hardware design.

The availability of open-source EDA tools
leads to multiple benefits. First, the availabil-
ity of open-source tools leads to reproducible
research with clear identification of state-of-the-
art results. Thus, open-source tools enable une-
quivocal benchmarking that can quickly identify
new EDA solutions that advance the state of the
art. Second, open-source tools enable the accel-
eration of EDA research as innovations can be
implemented at a faster rate by building on top
of existing open-source tools and components.
Thus, open-source tools lower the barrier to
entry to the field by new students or practition-
ers. Third, full-stack open-source tools enable the
quantification of improvements across the entire
EDA flow. Since it is possible that improvements
in one EDA stage are masked by downstream
tools, evaluation within the context of a full stack
of open-source EDA tools ensures that these
improvements stick till the end. Fourth, open-
source tools with standard I/O format exchanges
enable a healthy ecosystem to develop between
open-source tools and closed-source industrial
tools, leading to faster dissemination of knowl-
edge between academia and industry. Fifth,
open-source EDA tools lead to a more trustworthy
design process since the scrutinizing of an open-
source tool by a community of developers can
identify any backdoors that lead to the capture

Digital Object Identifier 10.1109/MDAT.2020.3038851

Date of current version: 8 April 2021.

Sherief Reda
Brown University

Leon Stok
IBM

Pierre-Emmanuel Gaillardon
University of Utah

6 IEEE Design&Test

Guest Editors’ Introduction

of sensitive design information or potential inser-
tion of hardware Trojans.

Open-source development leads to special
challenges. First, there is a need for common
infrastructure tools, such as EDA databases that
consolidate shared tasks, such as data structures
for internal circuit representations and reading/
writing of standard I/O EDA formats. Second, there
is a need for open-source tools to fully interoper-
ate with physical design kits (PDKs) and libraries.
Existing open-source PDKs and libraries (e.g.,
FreePDK45nm) do not map to any real manufac-
turing flows. However, recent efforts by Google
and Skywater to release a full manufacturing
PDK in 130 nm provide a hopeful path [4], where
other vendors might follow suit and open-source
the PDKs and libraries of some of their mature
technology nodes. Third, open-source tools need
maintenance beyond their release, requiring long-
term commitment and funding. Thus, developing
and engaging a community of developers through
collaborative platforms, e.g., Github, is essential
for long-term success.

In this issue, we have collected papers that
touch upon key parts of the design flow. A
requirement in the review process was that the
code is released as open-source, and all the
tools released with the special issue are given in
Table 1.

The first series of articles introduces complete
flows, addressing a specific design category,
namely analog, synchronous digital, and asyn-
chronous digital. First, analog layout tools are a
key part of any electronic design system. They
are as essential to analog design as they are to
digital design where they are used to design the
cell libraries, memory cells, and all key analog
components. The paper titled “ALIGN: A System

for Automating Analog Layout” describes a cor-
rect by construction approach to synthesize elec-
trically and designs compliant design. By taking
advantage of layout hierarchies the authors are
able to apply this to an interesting class of cir-
cuits. The second paper on analog design flows
is titled “MAGICAL: An Open-Source Fully Auto-
mated Analog IC Layout System from Netlist to
GDSII,” where it presents MAGICAL, which is a
fully automated analog IC layout system. MAGI-
CAL takes a netlist and design rules as inputs and
it produces the final GDS layout in a fully auto-
mated fashion. For asynchronous logic flows,
the paper titled “An Open-Source EDA Flow for
Asynchronous Logic” presents an open-source
EDA flow for digital asynchronous circuits, capa-
ble of supporting many different families of asyn-
chronous circuit families from logic synthesis all
the way down to GDSII. Finally, the paper titled
“Real Silicon Using Open-Source EDA” demon-
strates that complete open-source tooling can be
used to design industrial quality digital circuits.
Using the OpenLane framework, based itself on
the OpenROAD tool [5], the authors show a com-
plete set of RISCV-based SoC.

In addition to complete flows, the second
series of articles introduces specific point tools.
Design for test (DFT) is an integral part of the
design flow. An open-source DFT flow is there-
fore essential for any open-source solution. The
paper titled “Fault: Open-Source EDA’s Missing
DFT Toolchain” describes an approach to fill in
this missing piece. The paper titled “PyH2: Using
PyMTL3 to Create Productive and Open-Source
Hardware Testing Methodologies” proposes a
new model testing and verification methodol-
ogy, PyH2, using property-based random testing
in Python. PyH2 leverages the whole Python eco-
system to build test benches and models. The
paper “OpenTimer v2: A Parallel Incremental
Timing Analysis Engine” introduces a high-qual-
ity open-source static timing analysis engine that
is capable of parallel incremental timing and that
provides an efficient API to facilitate the devel-
opment of complex EDA tools. Finally, the paper
titled “CATNAP-Sim: A Comprehensive Explora-
tion and a Nonvolatile Processor Simulator for
Energy Harvesting Systems” introduces an archi-
tecture exploration tool to study and understand
the tradeoffs of future processor systems using

Table 1. Open-source tools released for articles
in this special issue.

7March/April 2021

 Direct questions and comments about this article to
Sherief Reda, School of Engineering, Brown University,
Providence, RI 02912 USA; sherief_reda@brown.edu.

nonvolatile memory and help guide the design
of the future.

We hope you enjoy the articles and tools that
are available with this special issue.

 References
 [1] L. W. Nagel and D. O. Pederson, “SPICE (Simulation

Program with Integrated Circuit Emphasis),” EECS Dept.,

Univ. California, Berkeley, Tech. Rep. No. UCB/ERL

M382, 1973.

 [2] R. K. Brayton et al., Logic Minimization Algorithms for

VLSI Synthesis (The Kluwer International Series in

Engineering and Computer Science 2). New York,

NY, USA: Springer, 1984, ISBN 978-1-4612-9784-0,

pp. 1–193.

 [3] E. M. Sentovich et al., “SIS: A system for sequential circuit

synthesis,” EECS Dept., Univ. California, Berkeley, Tech.

Rep. No. UCB/ERL M92/41, May 1992.

 [4] Google Skywater PDK. [Online]. Available: https://github.

com/google/skywater-pdk

 [5] T. Ajya et al., “Toward an open-source digital flow: First

learnings from the OpenROAD project,” in Proc. ACM/

IEEE Design Autom. Conf., 2019, Article no. 76, pp. 1–4.

Sherief Reda is a Full Professor with the School of
Engineering, Brown University, Providence, RI, USA.
His research interests are in the area of hardware
systems, with focus on energy-efficient computing,
design automation of integrated circuits, embedded
systems, and computer architecture. He is a Senior
Member of IEEE.

Leon Stok is Vice President of EDA IBM. Stok
has a PhD degree in electrical engineering from the
Eindhoven University of Technology, Eindhoven, The
Netherlands. He is a Fellow of IEEE.

Pierre-Emmanuel Gaillardon is an Asso-
ciate Professor with the Electrical and Computer
Engineering (ECE) Department, The University of
Utah, Salt Lake City, UT, where he leads the Labo-
ratory for NanoIntegrated Systems (LNIS). He is a
Senior Member of IEEE.

8 2168-2356/20©2020 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Open-Source EDA

Editor’s notes:
This article describes a correct by construction approach to synthesize
electrically and designs compliant design. By taking advantage of layout
hierarchies the authors are able to apply this to an interesting class of circuits.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 AnAlog lAyout, Intelligently Generated from
Netlists (ALIGN) [1] is an open-source layout genera-
tor for analog circuits that is currently under develop-
ment. Version 1 of the software flow was released in
August 2020. The ALIGN project engages a joint aca-
demic/industry team to translate a SPICE-level netlist
into a physical layout, with a 24-hour turnaround and
no human in the loop. The ALIGN flow inputs a netlist
of the topology and transistor sizes of which have
already been chosen, specifications, and a process
design kit (PDK), and outputs GDSII.

ALIGN: A System for
Automating Analog
Layout
Tonmoy Dhar and Kishor Kunal
University of Minnesota

Yaguang Li
Texas A&M University

Meghna Madhusudan, Jitesh Poojary, and
Arvind K. Sharma
University of Minnesota

Wenbin Xu
Texas A&M University

Steven M. Burns
Intel Labs

Digital Object Identifier 10.1109/MDAT.2020.3042177
Date of publication: 3 December 2020; date of current version:
8 April 2021.

The philosophy of ALIGN is to com-
positioally synthesize the layout by first
identifying layout hierarchies in the
netlist, then generating correct-by-con-
struction layouts at the lowest level of
the hierarchy, and finally assembling
blocks at each level of hierarchy during
placement and routing. Thus, a key step
in ALIGN is to identify these hierarchies

to recognize the building blocks of the design. In
doing so, ALIGN mimics the human designer, who
identifies known blocks, lays them out, and then
builds the overall layout hierarchically. At the low-
est level of this hierarchy is an individual transis-
tor; these transistors are then combined into larger
fundamental primitives [e.g., differential pairs and
current mirrors], then modules [e.g., operational
transconductance amplifiers (OTAs)], up through
several levels of hierarchy to the system level [e.g.,
a radio-frequency (RF) transceiver]. ALIGN uses
a mix of algorithmic techniques, template-driven
design, and machine learning (ML) to create lay-
outs that are at the level of sophistication of the
expert designer.

Ramesh Harjani
University of Minnesota

Jiang Hu
Texas A&M University

Desmond A. Kirkpatrick, Parijat Mukherjee,
and Soner Yaldiz
Intel Labs

Sachin S. Sapatnekar
University of Minnesota

9March/April 2021

Unlike digital designs that are built from a compo-
sition of a small number of building blocks, analog
circuits tend to use a wide variety of structures. Each
of these has its own constraints and requirements,
and traditionally only the expert designer has been
able to build circuits that could deliver high per-
formance. ALIGN targets a wide variety of analog
designs, in both bulk and FinFET technologies, cov-
ering four broad classes of functionality:

• Low-frequency components that include analog-
to-digital converters (ADCs), amplifiers, and filters.

• Wireline components that include clock/data
recovery, equalizers, and phase interpolators.

• RF/wireless components that implement trans-
mitters, receivers, etc.

• Power delivery components that include capaci-
tor- and inductor-based DC-to-DC converters.

Each class is characterized by similar building
blocks that may have a similar set of performance
parameters, although it should be mentioned that
there is considerable diversity even within each
class. An overview of factors that are important for
designs in each category is summarized in Figure 1.

There have been several prior efforts to automate
analog layout synthesis [2]–[8], but these methods
are not widely deployed in tools today. Some meth-
ods address limited classes of designs; others cannot
be tuned to handle a wide enough set of variants
of the same design class. Moreover, there is a gen-
eral consensus that prior methods for automating
analog layout have been unable to match the expert
designer, both in terms of the ability to comprehend
and implement specialized layout tricks and the num-
ber and variety of topologies with circuit-specific con-
straints. The ultimate goal for analog layout synthesis
is to reach the quality of a hand-crafted design.

In recent years, the landscape has shifted in
several ways, making automated layout solutions
attractive. First, in nanometer-scale technologies,
restricted design rules with fixed pitches and unidi-
rectional routing limit the full freedom of layout that
was available in older technologies, thus reducing
the design space to be explored during layout, reduc-
ing the advantage to the human expert. Second,
today more analog blocks are required in integrated
systems than before, and several of these require
correct functionality and modest performance. The
combination of increasing analog content with the
relaxation in specifications creates a sweet spot

for analog automation. Even for high-performance
blocks, an automated layout generator could con-
siderably reduce the iterations between circuit opti-
mization and layout, where layout generation is the
primary bottleneck. Third, the advent of ML provides
the promise for attacking the analog layout problem
in a manner that was not previously possible, and set
the stage for no-human-in-the-loop design.

This article provides an overview of the technical
details of ALIGN and shows how ALIGN has been used
to translate analog circuit netlists to layouts. The core
ALIGN engine can be run with no human in the loop,
enabled by ML algorithms that perform the functions
typically performed by humans, e.g., recognizing hier-
archies in the circuit during auto-annotation, or gener-
ating symmetry constraints for layout. ML algorithms
can also be instrumental in creating rapid electrical
constraint checkers, which verify whether a candi-
date placement/routing solution meets performance
constraints or not, and using this to guide the place-
and-route engine toward optima that meet all specifi-
cations. For more in-depth details, the reader is referred
to detailed descriptions given in [9]–[12], and to watch
for new publications of ongoing work by our group.

Technical core of ALIGN
The ALIGN flow consists of five modules, illus-

trated in Figure 2:

• Netlist auto-annotation creates a multilevel hier-
archical representation of the input netlist and
identifies structural symmetries in the netlist. This
is a key step that is used to hierarchically build
the layout of the circuit.

Figure 1. Classification of analog circuits, showing
the factors that are important for each category of
circuits.

10 IEEE Design&Test

Open-Source EDA

• Design rule capture abstracts the proprietary PDK
into a simplified grid, appended with Boolean
constraints as needed, that must be obeyed at all
steps during layout.

• Constraint generation identifies the performance
constraints to be met and transforms them into
layout constraints, such as maximum allowable
net lengths, or constraints such as matching/
common-centroid based on structural informa-
tion identified during auto-annotation.

• Parameterized primitive cell generation automati-
cally builds layouts for primitives, the lowest-level
blocks in the ALIGN hierarchy. Primitives typically
contain a small number of transistor structures
(each of which may be implemented using multi-
ple fins and/or fingers). A parameterized instance
of a primitive in the netlist is automatically trans-
lated to a GDSII layout in this step.

• Hierarchical block assembly performs placement
and routing on the hierarchical circuit structure
while meeting geometric and electrical constraints.

The flow creates a separation between the open-
source code and proprietary data. Proprietary PDK
models must be translated into an abstraction that is
used by the layout generators. Parts of the flow are
driven by ML models: the flow provides the infrastruc-
ture for training these models on proprietary data.

The overall ALIGN flow is intended to support no-hu-
man-in-the-loop design. However, the flow is modular
and supports multiple entry points: for example, the
auto-annotation module could be replaced by designer
annotation, and the rest of the flow could be executed
using this annotation. The flow is flexible to user input:
for example, the user can specify new primitives, and

they will be used by the annotation module as well as
the layout generator within the flow.

Netlist auto-annotation
This step groups transistors and passives in the

input netlist into a hierarchical set of building blocks
and identifies constraints on the layout of each
block. The input to ALIGN is a SPICE netlist that is
converted to a graph representation. Next, features
of the graph are recognized, and a circuit hierarchy
is created. If the input netlist is partitioned into sub-
circuits, such information is used during recognition,
but ALIGN does not count on the netlist hierarchy.
Instead, hierarchies are automatically identified and
annotated. It is important to note that the best layout
hierarchy may sometimes differ from a logical netlist
hierarchy; hence, ALIGN may flatten netlist hierar-
chies to build high-quality layouts.

Analog designers typically choose from a large
number of variants of each design block, e.g., between
textbooks and research papers, there are well over 100
widely used OTA topologies of various types (e.g., tel-
escopic, folded cascode, Miller-compensated). Prior
methods are library-based (i.e., they match a circuit
to prespecified templates) [5] or knowledge-based
(i.e., they determine block functionality using a set of
encoded rules) [2], or both [13]. Library-based meth-
ods require a large library, while rule-based methods
must be supported by an exhaustive knowledge base,
both of which are hard to build and maintain. ALIGN
uses two approaches for annotating circuits blocks,
both based on representing the circuit connectivity
using a graph representation:

(1) ML-based methods: For commonly encountered
blocks, the problem of identifying blocks maps on to

Figure 2. Overview of the ALIGN flow.

11March/April 2021

whether a subgraph of the larger circuit is to isomor-
phic to a known cell. However, to allow for design
variants, ALIGN uses approximate graph isomorphism,
enabled by the use of graph convolutional neural net-
works (GCNs) that classify nodes within the circuit
graph into classes [e.g., OTA nodes, low-noise amplifier
(LNA) nodes, and mixer nodes]. With some minimal
postprocessing, it is demonstrated that this approach
results in excellent block recognition. Details of the
approach are provided in [9]. A training set for the
GCN, consisting of 1390 OTA circuits, including bias
networks, is available on the ALIGN GitHub repository.

(2) Graph-traversal-based methods: It is unrealistic to
build a training set that covers every possible analog
block, and for blocks that lie outside the scope of the
GCN training set, we use graph-based approaches to
recognize repeated structures within a circuit. Such
structures typically require layout constraints: for exam-
ple, ADCs may use a set of binary-weighted capacitors
or a set of resistors in an R-2R ladder, and these require
careful placement in common-centroid fashion and
symmetric routing. ALIGN employs methods based
on graph traversal and approximate subgraph isomor-
phism to recognize these array structures.

Once these structures are recognized in a very
large circuit graph, they form a level of the hierarchy.
Within these blocks, lower hierarchical levels can be
detected using conventional subgraph isomorphism
methods: sub-blocks at these levels have fewer vari-
ants and can be efficiently recognized using library-
based approaches.

Figure 3 shows the results of auto-annotation on a
switched-capacitor (SC) filter. A GCN-based approach

can be used to identify the current-mirror OTA, and
then primitives within the OTA can be identified. In the
process, lines of symmetry within each structure can be
found, as illustrated in the figure. At the primitive level,
since the layouts are generated by the parameterized
cell generator, these lines of symmetry are implicit in
the definition of the primitive. At higher levels, these
can be inferred during auto-annotation.

Design rule abstraction
The ALIGN layout tools are guided by pro-

cess-specific design rules that ensure design rule cor-
rectness. The complexity of design rules has grown
significantly in recent process generations. Efforts at
building generalized abstractions for process rules
have previously been proposed (e.g., [14]). ALIGN
uses a more efficient design rule abstraction mech-
anism that creates fixed grid structures in FEOL and
BEOL layers, as illustrated in Figure 4. Major grids
(bold lines) represent centerlines for routes, while
minor grids (dashed lines) correspond to stopping
points for features. The gridding structure and basic
process information are abstracted into a JSON file.
For BEOL layers, this includes:

• default wire dimensions, pitch, and grid offset
(Pitch, Width, MinL, MaxL, Offset);

• end-to-end spacing design rules (EndToEnd);
• metal direction, colors (Direction, Color);
• via rules (Space{X/Y}, Width{X/Y},

VencA_{L/H}, VencP_{L,H}).

While this is superficially similar to tradi-
tional λ-rules, our abstraction permits a different

Figure 3. Extracting netlist hierarchy during auto-annotation.

12 IEEE Design&Test

Open-Source EDA

gridding structure that can vary from layer to layer,
and the use of major/minor grid lines that repre-
sent wire pitches, wire overhangs, as well as the
ability to incorporate via rules through Boolean
constraints. Our approach reduces the complex
set of conditions embedded in thousands of rules
in a design rule manual to a massively simplified
and much smaller set, enforcing some limitations
through the choice of grids. It is found, through
comparisons with manual design, that this leads
to minimal or zero degradation in layout quality.
Advanced commercial process nodes (22, 10,
7 nm, and beyond) have been abstracted into this
simplified form. The abstraction enables layout
tools to comprehend PDK features such as regu-
lar and irregular width and spacing grids (for each
layer), minimum end-to-end spacing design rules
(between metals in the same track), minimum
length design rules, and enforced stopping point
grids. For convenience, the JSON file also encodes
per unit parasitics for metal layers and vias.

To facilitate further layout research, we have
released design rules for mock PDKs based on pub-
lic-domain information to abstract layout rules at
a 14-nm FinFET node [15] and a 65-nm bulk node
[16]. Although they do not represent real technolo-
gies, they are realistic. Validation of the design tools

on these PDKs, which can be freely shared, helps the
software development process.

Constraint generation
Two types of constraints are generated to guide

layout.
(1) Geometric constraints: As the auto-annotation

step recognizes known blocks or array structures,
it associates geometric requirements with these
blocks, such as symmetry, matching, and com-
mon-centroid constraints. For instance, Figure 3
shows lines of symmetry in an OTA structure that
must be respected during layout. These constraints
are extracted naturally as part of auto-annotation. In
contrast with prior methods that are based on sim-
ulation-intensive sensitivity analysis [17] or graph
traversal-based exact matching to templates [5],
the approach in the ALIGN method [10] combines
graph traversal methods with ML-based methods
and is computationally efficient, and capable of
finding hierarchically nested symmetry constraints
even under approximate matches.

(2) Electrical constraints: ALIGN generates a lay-
out based on a fixed netlist, and performance shifts
are driven by changes in parasitics from netlist-
level estimates to post layout values. Therefore,
ALIGN translates electrical constraints to bound
the maximum parasitics at any node of the circuit.

Figure 4. Design rule abstraction using per-layer grids and rules.

13March/April 2021

For instance, an electrical constraint may be trans-
lated to a maximum limit on the resistance of a wire
connecting two nodes, which in turn corresponds
to a constraint on the maximum length, the number
of parallel metal tracks, and the number of vias on
the route connecting these nodes. This feature is cur-
rently being implemented in ALIGN [11], [12] and is
a work in progress. The essential idea is to develop
a fast ML inference engine that operates within the
inner loop of an iterative placer, and for each placer
configuration, determines whether its electrical con-
straints are satisfied.

These constraints are passed on to the layout
generation engine to guide layout at all levels
of hierarchy.

Parameterized primitive layout generation
ALIGN provides the user with a predefined

library of parameterizable primitives, as illustrated
in Figure 5. Each primitive consists of a small num-
ber of transistor or passive units; however, each such
unit may consist of multiple replicated structures,
such as multifin/multifinger transistors, or resistive/
capacitive arrays.

The primitive cell layout follows the gridded
abstraction defined by the design rules, and cell
generation can be parameterized in terms of the
unit cell and the number of unit cells, as shown
in Figure 6. For a transistor, a unit cell may be
parameterized by the number of fins in a FinFET
technology; for a capacitor, parameterization
may correspond to the size of the unit capacitor.
Additionally, primitive layouts can be parameter-
ized by their aspect ratio, their layout style (com-
mon-centroid versus interdigitated transistors),
the gate length, the effective widths of critical
wires in the cell, etc.

The utility in recognizing primitives and creat-
ing parameterized layouts is in enabling ALIGN
to create layouts that incorporate the appropriate
geometric constraints (e.g., symmetry or com-
mon-centroid). In principle, a layout could be
built using a “sea of transistors,” where the primi-
tive corresponds to a single transistor, but it would
be challenging for such an approach to enforce
symmetry requirements beyond the transistor
primitives. Prior methods for primitive layout gen-
eration [18]–[21] have generally not been as mod-
ular or scalable as the ALIGN approach.

Hierachical block assembly
Given the layouts of all primitives and the hierar-

chical block-level structure of the circuit, extracted

during auto-annotation, the placement, and rout-

ing step performs hierarchical block assembly that

obeys the geometric and electrical constraints

described earlier.

Each layout block in the hierarchy can have mul-

tiple layout options with different shapes generated

for each module. For example, primitives can be

parameterized by aspect ratio, and multiple aspect

ratios for other blocks may be generated. Flexible

shapes drive floorplanning-like placement algo-

rithms that deliver compact layouts under the electri-

cal and geometric constraints passed on to them by

the constraint generation step. Routing is integrated

into each hierarchical level, accounting for net

length/parasitic constraints, shielding and symmetry

requirements, and conforming with the design rules

embedded into the PDK abstraction. The placer is

based on prior work using the sequence pair method

[7] and can handle general geometric constraints,

such as symmetry, matching, and alignment. Sym-

metry, shielding, and resistance-constrained routing

are supported during routing.

The ALIGN flow can employ one of the two

detailed routers.

Figure 5. Examples of primitive structures.

14 IEEE Design&Test

Open-Source EDA

• A constructive router that uses an integer linear pro-
gramming formulation and an A* algorithm; this
works particularly well for more sparse designs.

• A satisfiability-based detailed router,1 released by
Intel, is well suited for congested designs.

Working in an open-source environment

Why open-source software?
Aside from technical innovations, ALIGN breaks

new ground in providing a fully open-source analog
layout software flow, which has not been available
in the past. The availability of open-source soft-
ware is crucial for nurturing future innovations in
the field. First, further research can build upon a
“piece of the puzzle” of analog layout design: for
instance, a new cell generator can plug into the
open-source ALIGN flow and show end-to-end
results from netlist to layout, rather than providing
limited results at the end of cell generation. Sec-
ond, open-source enables a path to ensure that
reported results can be reproducible. The traction
for open-source is evidenced not only through the
efforts in ALIGN, but also in other notable efforts
on analog layout [22] and digital layout (including
back-end infrastructure such as parasitic extraction
on power delivery that is more broadly applicable
to any other class of design) [23].

Open-source designs
Unlike digital designs, where a wealth of

designs exists in the public domain, the font of

1 github.com/ALIGN-analoglayout/AnalogDetailedRouter

analog designs is very sparse. Design parameters
tend to be closely linked with process nodes, and
existing automation flows do not allow robust
circuit optimization to meet constraints. Sharing
designs based on a commercial PDK over multi-
ple institutions requires a multiway nondisclosure
agreement involving the institutions, the foundry,
and the foundry access provider. Within the ALIGN
team, this issue was complicated by the need for
such an agreement to cover both academic and
industry team members.

The ALIGN GitHub repository hosts a number
of sized analog netlists, a set that is growing, to
facilitate open research. These netlists contain test
benches that measure the performance parame-
ters of the circuit to verify its adherence to specifi-
cations. Moreover, as stated earlier, the repository
contains unsized netlist topologies for a variety of
OTA circuits.

Software infrastructure
The software flow is maintained on a GitHub

repository [24] and maybe downloaded and
installed in a native Linux environment. Alterna-
tively, it may be run in a lightweight Docker con-
tainer that performs operating system virtualization
and enables portability and ease of maintenance.
ALIGN can leverage the use of other open-source
tools such as the KLayout layout viewer. The core
software flow is Python-based, and the computa-
tionally intensive engines—notably the placer and
router—are implemented in C++.

The project is aided by the use of tools that are
vital to an open-source infrastructure with continuous

Figure 6. Parameterization of primitive layouts.

15March/April 2021

integration (CI). These include CI build flows, using
CircleCI, for automated building of new components
as they are added to the repository; unit testing, using
pytest, to verify the correctness of individual units of
source code that is added to the repository; code cov-
erage to measure how much of the code is executed
by the automated tests, using coverage.py with Code-
cov for tracking; and automated code review for code
quality checks using Codacy.

Results
The ALIGN flow has been applied to gener-

ate layouts for circuits that lie in all four classes:
1) low-frequency analog; 2) wireline; 3) wireless;
and 4) power delivery. We are unaware of a prior
layout generator that has been demonstrated to
handle such a broad class of circuits. Figure 7
illustrates a sample set of layouts generated using
ALIGN: these include a current-mirror OTA with
bias circuitry and its power grid (Figure 7b), an SC
filter containing the OTA (Figure 7c), an ADC (all
low-frequency analog), a bandpass filter (Figure 7e)
(wireless), an SC DC-to-DC converter (Figure 7a)
(power delivery), and an equalizer (Figure 7f) and
an optical receiver (Figure 7g) (both wireline). The
layouts are compact and regular.

A set of representative results for the post lay-
out performance analysis of ALIGN-generated
layouts for the OTA (Figure 7b) and the SC fil-
ter (Figure 7c) containing the OTA are shown
in Tables 1 and 2, respectively. For the larger

Figure 7. Sample layouts generated by

ALIGN. Note that the block sizes are

different; the layouts are not on the

same scale. (a) SC DC-to-DC converter.

(b) OTA with bias circuitry. (c) SC

filter. (d) ADC. (e) Bandpass filter.

(f) Equalizer. (g) Optical receiver.

Table 1. Postlayout performance analysis of the ALIGN-
generated OTA layout.

Table 2. Postlayout performance analysis of the ALIGN-generated
SC filter layout.

16 IEEE Design&Test

Open-Source EDA

block, the SC filter, the extraction results show a
good match with the schematic simulation (this
level of mismatch between schematic and layout
performance is quite normal in analog design),
attesting to the quality of the layout. Moreover,
the layout respects symmetry constraints that
are considered important by analog designers to
guard against parasitic mismatch due to system-
atic variability. For both layouts, the performance
of the ALIGN-generated layout is very close to
that of the manual layout.

For a set of wireline circuits, Table 3 shows a com-
parison between the performance of the ALIGN-gen-
erated layout and a hand-crafted manual layout and
demonstrates that the performance of both layouts
is comparable.

this Article summArizes the current state
of the ALIGN flow for automated analog layout
synthesis. ALIGN is open-source and may be
downloaded and used freely [24]. Currently, the
project has seen about 24 months of develop-
ment, and can already synthesize layouts for a
wide variety of analog circuits. It is expected that
the capabilities of ALIGN will be enhanced sig-
nificantly over the next few years, handling more
sophisticated circuits, more complex constraints,
and improved software robustness. The inher-
ent hierarchical approach adopted by ALIGN
is key to ensuring scalability of the software to
larger designs in the future, while also providing
high-quality solutions.

Acknowledgments
This work was supported in part by the

DARPA IDEA program under SPAWAR Contract
N660011824048.

 References
 [1] K. Kunal et al., “ALIGN – open-source analog layout

automation from the ground up,” in Proc. ACM/IEEE

Design Autom. Conf., 2019, pp. 1–4.

 [2] R. Harjani, R. A. Rutenbar, and L. R. Carley, “OASYS:

A framework for analog circuit synthesis,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 8,

no. 12, pp. 1247–1266, Dec. 1989.

 [3] J. M. Cohn et al., “KOAN/ANAGRAM II: New tools

for device-level analog placement and routing,” IEEE

J. Solid-State Circuits, vol. 26, no. 3, pp. 330–342,

Mar. 1991.

 [4] H. E. Graeb, Ed., Analog Layout Synthesis: A Survey

of Topological Approaches. New York, NY, USA:

Springer, 2010.

 [5] M. Eick et al., “Comprehensive generation of

hierarchical placement rules for analog integrated

circuits,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 30, no. 2, pp. 180–193, Feb. 2011.

 [6] H.-C. Ou, H.-C.-C. Chien, and Y.-W. Chang, “Simultaneous

analog placement and routing with current flow and

current density considerations,” in Proc. ACM/EDAC/IEEE

Design Autom. Conf., May 2013, pp. 1–6.

 [7] Q. Ma et al., “Simultaneous handling of symmetry,

common centroid, and general placement constraints,”

IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 30, no. 1, pp. 85–95, Jan. 2011.

 [8] C.-Y. Wu, H. Graeb, and J. Hu, “A pre-search assisted ILP

approach to analog integrated circuit routing,” in Proc.

IEEE Int. Conf. Comput. Design, Oct. 2015, pp. 244–250.

 [9] K. Kunal et al., “GANA: Graph convolutional network

based automated netlist annotation for analog

circuits,” in Proc. Design, Autom. Test Eur. Conf. Exhib.,

Mar. 2020, pp. 55–60.

 [10] K. Kunal et al., “A general approach for identifying

hierarchical symmetry constraints for analog circuit

Table 3. Comparing the performance of the schematic (S), manual layout (M), and the
ALIGN-generated layout (A) of several wireline circuits.

17March/April 2021

layout,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided

Design, Nov. 2020, pp. 1–8.

 [11] Y. Li et al., “Exploring a machine learning approach to

performance driven analog IC placement,” in Proc. IEEE

Comput. Soc. Annu. Symp. VLSI, Jul. 2020, pp. 24–29.

 [12] Y. Li et al., “A customized graph neural network

model for guiding analog IC placement,” in Proc.

IEEE/ACM Int. Conf. Comput.-Aided Design,

Nov. 2020, pp. 1–9.

 [13] P.-H. Wu et al., “A novel analog physical synthesis

methodology integrating existent design expertise,”

IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 34, no. 2, pp. 199–212, Feb. 2015.

 [14] G. Soto. (2017). Discover the Power of OPAL, a New

High-Level Design Rule Modeling Language. Talk at

Si2 Event at DAC. [Online]. Available: http://www.si2.

org/events/opal/

 [15] C.-H. Lin et al., “High performance 14 nm SOI FinFET

CMOS technology with 0.0174 µm2 embedded DRAM

and 15 levels of Cu metallization,” in IEDM Tech. Dig.,

Dec. 2014, pp. 3–8.

 [16] A. Steegen et al., “65 nm CMOS technology for low power

applications,” in IEDM Tech. Dig., Dec. 2005, pp. 64–67.

 [17] E. Malavasi et al., “Automation of IC layout with analog

constraints,” IEEE Trans. Comput.-Aided Design

Integr., vol. 15, no. 8, pp. 923–942, Aug. 1996.

 [18] S. Bhattacharya et al., “Correct-by-construction layout-

centric retargeting of large analog designs,” in Proc.

ACM/IEEE Design Autom. Conf., 2004, pp. 139–144.

 [19] N. Lourenco et al., “LAYGEN–Automatic layout

generation of analog ICs from hierarchical template

descriptions,” in Proc. Ph.D. Res. Microelectron.

Electron., 2006, pp. 213–216.

 [20] L. Zhang, U. Kleine, and Y. Jiang, “An automated design tool

for analog layouts,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 14, no. 8, pp. 881–894, Aug. 2006.

 [21] E. Yilmaz and G. Dundar, “Analog layout generator for

CMOS circuits,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 28, no. 1, pp. 32–45, Jan. 2009.

 [22] B. Xu et al., “MAGICAL: Toward fully automated analog

IC layout leveraging human and machine intelligence:

Invited paper,” in Proc. IEEE/ACM Int. Conf. Comput.-

Aided Design, Nov. 2019, pp. 1–8.

 [23] T. Ajayi et al., “Toward an open-source digital flow: First

learnings from the OpenROAD project,” in Proc. ACM/

IEEE Design Autom. Conf., 2019, pp. 1–4.

 [24] Software Repository. ALIGN: Analog Layout,

Intelligently Generated From Netlists. Accessed:

Aug. 1, 2020. [Online]. Available: https://github.com/

ALIGN-analoglayout/ALIGN-public

Tonmoy Dhar is currently pursuing a PhD with the
Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN. His
research interests are in reliability analysis and layout
synthesis of analog and mixed-signal circuits. Dhar
has a BSc in electrical and electronic engineering
from the Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh.

Kishor Kunal is currently pursuing a PhD with the
Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN. His
research interests are in computer-aided design
(CAD) of VLSI systems, analog layout automation,
and machine learning. Kunal has a BTech from IIT
Kharagpur, Kharagpur, India.

Yaguang Li is currently pursuing a PhD with
Texas A&M University, College Station, TX. His
current research interests include analog IC design
and machine learning. Li has a BS from the North
China University of Technology, Beijing, China (2015)
and an MS from ShanghaiTech University, Shanghai,
China (2018).

Meghna Madhusudan is currently pursuing a
PhD with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis,
MN. Her current research interests include analog
design and layout automation. Madhusudan has
a BE from Visvesvaraya Technological University,
Belgaum, India (2017).

Jitesh Poojary is currently pursuing a PhD
with the University of Minnesota, Minneapolis, MN.
His research interests are MIMO receivers and mm-
Wave receivers. Poojary has a BE from the University
of Mumbai, Mumbai, India (2012) and an MTech from
the Indian Institute of Technology, Delhi, New Delhi,
India (2015).

Arvind K. Sharma is currently a Post-Doctoral
Associate with the Department of Electrical and
Computer Engineering, University of Minnesota,
Minneapolis, MN. His current research interests
include device physics, circuit device interaction,
layout automation, and variability-aware circuit
design. Sharma has a PhD from IIT Roorkee, Roorkee,
India (2018).

Wenbin Xu is currently a Software Engineer with
Cadence Design Systems Inc., San Jose, CA. His
research interests include computer-aided design,

18 IEEE Design&Test

Open-Source EDA

 Direct questions and comments about this article
to Sachin S. Sapatnekar, Department of Electrical
and Computer Engineering, University of Minnesota,
Minneapolis, MN 55455 USA; sachin@umn.edu.

approximate computing, and hardware security.
Xu has BS and MS in electronic engineering from
Shanghai Jiao Tong University, Shanghai, China
(2008) and (2011), respectively, and a PhD in
computer engineering from Texas A&M University,
College Station, TX (2019).

Steven M. Burns is a Senior Principal
Engineer with Intel Labs, Hillsboro, OR. His current
research interests include analog layout synthesis,
transformation-based design environments, advanced
synthesis algorithms and methods, physical synthesis
of standard cells, and CAD for future process
technologies. Burns has a PhD from the California
Institute of Technology, Pasadena, CA.

Ramesh Harjani is the E.F. Johnson Professor
with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis,
MN. His research interests include analog/RF circuits
for wireless communication. Harjani has a PhD from
Carnegie Mellon University, Pittsburgh, PA (1989).
He is a Fellow of IEEE.

Jiang Hu is a Professor of electrical and computer
engineering with Texas A&M University, College
Station, TX. His research interests include VLSI
physical design and machine learning algorithms.
He is a Fellow of IEEE.

Desmond A. Kirkpatrick is a Principal
Engineer with Intel Labs, Hillsboro, OR. Kirkpatrick
has an SB in electrical engineering from the
Massachusetts Institute of Technology, Cambridge,

MA and a PhD in electrical engineering and computer
sciences from the University of California, Berkeley,
Berkeley, CA.

Parijat Mukherjee is a Research Scientist
with Intel Labs, Hillsboro, OR. His research interests
include mixed-signal circuit analysis, analog layout
synthesis, presilicon prototyping of silicon debug
features, provably correct firmware development,
and formal methods for platform security verification.
Mukherjee has a PhD in computer engineering from
Texas A&M University, College Station, TX (2015).

Soner Yaldiz has been with Intel Labs, Hillsboro,
OR, since 2012. His research focuses on computer-
aided design of electrical circuits and systems. Yaldiz
has a BS from Sabanci University, Istanbul, Turkey
(2004), an MS from Koc University, Istanbul, Turkey
(2006), and a PhD from Carnegie Mellon University,
Pittsburgh, PA (2012).

Sachin S. Sapatnekar is the Henle Chair
Professor in electrical and computer engineering and
a Distinguished McKnight University Professor with
the University of Minnesota, Minneapolis, MN. He is a
Fellow of IEEE and ACM.

192168-2356/20©2020 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2021

Editor’s notes:
This article presents MAGICAL, which is a fully automated analog IC layout
system. MAGICAL takes a netlist and design rules as inputs, and it produces
the final GDS layout in a fully automated fashion.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 The expanding markeTs of emerging appli-
cations, including the Internet of Things (IoT),
5G networks, advanced computing, healthcare
electronics, etc., create large demands for analog
and mixed-signal (AMS) integrated circuits. This
increasing demand calls for a shorter design
cycle and time-to-market. When compared with
the tremendous advancements in digital IC lay-
out design automation tools, analog IC layout still
remains a heavy manual, time-consuming, and
error-prone task. This is due to its high design
flexibility and sensitive impact on the circuit per-
formance by even minor changes in the layout
implementation.

MAGICAL: An Open-
Source Fully Automated
Analog IC Layout
System from Netlist to
GDSII
Hao Chen, Mingjie Liu, Biying Xu,
Keren Zhu, Xiyuan Tang, Shaolan Li,
Yibo Lin, Nan Sun, and David Z. Pan
The University of Texas at Austin

Traditional analog lay-
out synthesis tools rely
on various heuristic con-
straints to guide the lay-
out generation process
[1]. These heuristics are
based on human layout
techniques and enforced
during the placement

of devices and routing. Heuristic constraint-based
methods face extreme difficulties in practical design
flows, where handcrafted constraints are often
design and technology dependent, lacking flexibil-
ity and generalization when meeting the detailed
requirements of different scenarios. There is also
the challenge of hard-encoding all such constraints
in a legal procedure, especially when numerous
contradictory constraints are present. Analytical
approaches attempt to uncover the layout design
tradeoffs either by deriving closed-form equations in
evaluating the layout-dependent effects or sensitivity
analysis simulations. With increased device scaling,
analytical sensitivity estimates of parasitics and mis-
match over performance are no longer accurate.

The most difficult thing above all is the limited
availability of analog design tools. In contrast to the
booming community of machine learning, where

Digital Object Identifier 10.1109/MDAT.2020.3024153
Date of publication: 14 September 2020; date of current version:
8 April 2021.

20 IEEE Design&Test

Open-Source EDA

popular frameworks and data sets are open-sourced,
easily available, and heavily relied upon in research
by the academic community, commonly used tools
in analog design are largely proprietary. The lack
of implemented frameworks, benchmark circuit
data sets, and publicly available process design kits
(PDKs), severely restrict the reproducibility of current
research results and impede further improvement
and extended research.

In this article, we present our work MAGICAL, a
fully automated, end-to-end analog IC layout frame-
work that generates a completed layout from a
circuit netlist. Implemented modules include sym-
metry constraint generation, placement, and routing.
These modules are implemented in C++ for optimal
software performance, and off-the-shelf with user-
friendly Python interface available. The source code1
is released on GitHub with a number of sanitized
benchmark circuits provided.2 The layouts completed
by MAGICAL are validated using industrial standard
verification tools, demonstrating circuit performances
close to those handcrafted by experienced designers.

Compared with prior on procedural layout gen-
erators, such as Berkeley analog generator (BAG)
[2], MAGICAL reduces the cost of codifying specific
constraints and detailed layout implementation
such as circuit floorplan and routing topology. This
is achieved with automated symmetry extraction lev-
eraging pattern matching and graph similarity, and
area and wirelength driven placement and routing
optimization kernel. MAGICAL is also extensible to

1https://github.com/magical-eda/MAGICAL
2https://github.com/magical-eda/MAGICAL-CIRCUITS

handle custom constraints. We also present several
of our research and findings that build upon the
MAGICAL framework, including applied machine
learning techniques, custom constraints, specific
design considerations, and leveraging post layout
simulation results for performance modeling and
optimizations in the “Extensions based on MAG-
ICAL” section. Moreover, we hope to promote
research and progress in the analog design auto-
mation community, where future researchers could
embed new heuristics and algorithms leveraging our
framework. Our tool also complements other exist-
ing design automation tools in the open-source com-
munity [2]–[4].

Magical framework
The overall flow of MAGICAL is shown in Figure 1.

It takes an unannotated circuit netlist and design
rules as inputs, and produces a complete GDSII
layout as output fully automatically without human
designers in the loop. The entire flow consists of four
major modules, with each module being independ-
ent with a user-friendly Python interface. The design
rules and the extracted layout constraints are hon-
ored throughout the entire back-end flow.

Framework methodology and software
architecture

The MAGICAL system includes several individ-
ual submodules, i.e., layout constraint extractor,
device generator, placer, and router. A top-level
MAGICAL flow integrates the individual compo-
nents and manage the physical synthesis of the

Figure 1. MAGICAL framework. (a) MAGICAL submodules. (b) MAGICAL hierarchical flow.

21March/April 2021

circuits. Figure 1 shows the architecture of the
MAGICAL layout system. This architecture is rooted
upon the principle of divide-and-conquer nature of
the circuit design and motivated by the purposes
of creating an extensible and flexible open-source
environment.

The designs of complex analog systems, such
as phase-locked loops or analog-to-digital convert-
ers (ADCs), are typically decomposed into smaller
building blocks (e.g., comparators, filters, or ampli-
fiers). Human designers adopt a top-down design
methodology, where system-level performance is
translated to lower-level building block specifica-
tions. The layout design process, on the other hand,
is done bottom-up. The building block circuits are
first implemented and the performance is optimized
and verified. The system is then built with the build-
ing blocks. This divide-and-conquer practice avoids
optimizing the whole system at once and decom-
poses it into smaller and more traceable subprob-
lems. MAGICAL adopts this design methodology.
The whole physical synthesis is decomposed into
multilevel homogeneous subproblems. The top
MAGICAL flow manages and schedules the subprob-
lems, while the individual components build the lay-
out in the bottom-up manner.

The separation of submodules also allow easy
extension to the default MAGICAL flow. Convention-
ally, different components in a physical design flow
is connected by scripts and exchangeable files, for
example [4]. However, the complicated scripting
potentially make interaction between different com-
ponents difficult and hinder the flexibility on the flow.
On the other hand, the popularity of machine learn-
ing algorithm also raises question that whether the
conventional software methodology is suitable for the
emerging framework. MAGICAL is developed for easy
adaption of new components and changes on the
flow. Although the main optimizing kernels are devel-
oped in C++ for better efficiency, each submodule
has a Python interface. And the top level, MAGICAL
flow uses Python interface to assign the subproblems.
Such architecture is friendly to adoption of machine
learning framework and makes interactions easy. In
fact, there have been success on the extensions of
default MAGICAL. The “Experimental results” section
gives case studies of several MAGICAL extensions.

In the rest of this section, the default MAGICAL
submodules are explained in the detail.

Parametric device generation
Before running the core layout flow, the device

generation step first generates the layout of the
devices and extracts their pins to facilitate the subse-
quent placement and routing stages.

The generated GDSII layout is correct by construc-
tion based on the design rules. MAGICAL currently
supports numerous different device types, including
pMOS, nMOS, metal–oxide–metal (MOM) capaci-
tors, and poly resisters. The automatic parametric
device generation considers the number of fingers
for transistors, the number of segments for resistors,
the metal layers for MOM capacitors, etc.

The MAGICAL framework is also extensible for
custom-designed devices, digital standard cells, or
even subcircuits such as capacitor or resistor arrays.

Analog layout constraint extraction
The layout constraint extractor takes a circuit

netlist as input and generates constraints to guide
the later stages. Analog designs frequently use dif-
ferential topologies to reject common-mode noise
and enhance circuit robustness and performance
[5]. Thus, correctly identifying symmetry constraints
between sensitive devices are crucial for ensuring
the quality of placement and routing.

The constraint extraction reads in the input netlist
and generates constraints for placement and rout-
ing based on the circuit connections. A significant
challenge for constraint extraction is in generating
high-quality constraints and resolving constraint
ambiguity. Since the characteristics of symmetry
among devices and between building blocks are
vastly different, we use different methods to generate
symmetry constraints.

Device symmetry
Only the symmetry constraints between devices

need to be considered for building blocks. We adopt
a method similar to the works of Eick et al. [6]. The
building block circuit is abstracted into a graph. A
pattern library of the commonly used differential
topology of transistors is predefined. We use graph
isomorphic algorithms to detect matching patterns
on the building block circuits with the pattern library.
The circuit graph is then traversed from the matched
patterns to recognize new symmetry constraints of
passive devices, self-symmetry devices, and symme-
try routing constraints.

22 IEEE Design&Test

Open-Source EDA

System symmetry
System symmetry differs from device symmetry

because on the system level, template libraries are dif-
ficult to generate, and graph isomorphic algorithms
are expensive. Since the same building block could
be referenced multiple times in system design, we pro-
pose to extract graphs that include the neighboring
circuit topology of the building blocks to resolve the
ambiguity. The extracted graphs are then compared
using an efficient graph similarity metric leveraging
spectral graph analysis [7]. Self-symmetry constraints
and symmetry net constraints could also be extracted
similar to the approach in device symmetry.

Analog placement
Given the placement constraints and devices gen-

erated in the previous steps, we develop an analog
placement engine. The placer places each device
or building block in the layout satisfying the given
constraints while optimizing for the wirelength and
layout area.

The placement engine follows an analytical
framework as in [8]. First, the global placement
simultaneously optimizes multiple objectives in a
nonlinear objective function to generate a rough
legal placement. Then, the legalization step uses
linear programming (LP) algorithm to leaglize the
global placement results honoring input constraints
and design rules. Finally, another LP-based detailed
placement is used to optimize the wirelength further.

Analog routing
To determine the wire connections between all

the placed devices while satisfying the design con-
siderations for better circuit performance, a con-
straint-aware analog routing algorithm is applied.

In addition to connectivity and design rules, an
analog routing problem is usually imposed with sym-
metric net constraints, which are specified to ensure
matched nets routed symmetrically on some axes. In
MAGICAL, the routing engine takes the constraints
specification as an input from the layout constraint
generator and honors the symmetric and self-sym-
metric requirement for matched nets.

Our routing framework divides the routing prob-
lem into two stages, global routing and detailed rout-
ing, similar to the standard digital routing flow. To
generated a global routing solution, a sequential sym-
metry-aware grid-based A* search routing engine is
employed. The circuit is cut into unified grids whose

width and height are decided based on track width
on the first metal layer. More specifically, the global
routing engine divides the layout into a 3-D graph
with grids as the vertices and the connection between
neighboring grids as the edges. The capacity of each
edge is calculated based on free space modeling and
the actual congestion inside the grids. The symme-
try-aware global routing algorithm using mirroring
techniques then generates the solution for each net.

Given the global routing results as guidance, the
detailed routing engine completes the final routing
and assigns metal wire geometries. In contrast to
digital circuits, analog designs usually have various
metal widths and multiple via cuts for different nets,
along with a number of special specifications such
as symmetric constraints. To solve the detailed rout-
ing problem, the symmetric-aware A* path search-
ing algorithm is performed while satisfying design
rules and specific requirements for each net (e.g.,
wire width). After the detailed routing stage, the final
GDSII format layout file is exported.

Extensions based on magical
In this section, we present several of our research

that builds on top of the default MAGICAL frame-
work. We hope to demonstrate the extensibility of
the framework and the increased efficiency in the
development of novel algorithms and methods by
leveraging MAGICAL.

Machine learning guided well generation
Generating wells and inserting contacts are

required in layout synthesis. The default MAGICAL
framework generates separate NWELL contacts for
each individual pMOS devices. This provides supe-
rior device isolation and reduction in well proximity
effect at the increased overhead of area.

However, individual well contacts for transistor is
seldom adopted in manual layout strategy. Sharing
the same body connection leads to more compact
layout. WellGAN [9] provides an alternative to the
individual well contact. It formulates the well gener-
ation problem into a computer vision task and super-
visedly learns how human designers draw the well
using generative adversarial network (GAN). After
the training, the GAN model can generate images of
well based on the placement results and a legaliza-
tion routine can draw the well and insert the con-
tacts based on the model prediction.

23March/April 2021

Machine learning guided analog routing
In the default MAGICAL, the routing is targeting

wirelength and geometric constraints. However, the
router can be easily changed with a machine learn-
ing guided algorithm.

Zhu et al. [10] proposed GeniusRoute is developed
upon the MAGICAL router. It attempts to learn the
manual analog routing strategy by leveraging a varia-
tional autoencoder (VAE) model. Similar to WellGAN,
GeniusRoute formulates the learning into an image
generation task. The VAE models learn where human
designers are likely to route the nets in analog circuits
and generate prediction on unseen new circuits. The
router is modified to adapt the routing prediction.

Analog placement quality prediction
In the default MAGICAL framework, the analog

analytical placement engine only optimizes the
wire-length and area. While the wire-length might be
a natural surrogate for performance and highly cor-
related with the power and performance of digital
circuits, analog layout performance rarely has strong
relevance to the total wire-length. Thus, to satisfy
post layout performance requirements and achieve
design closure, a feedback loop from performance
simulation to the design flow is needed in the devel-
opment of practical layout synthesis tools.

To reduce the design exploration runtime and
limit the number of performance simulations, the
work of Liu et al. [11] proposes to predict of the lay-
out quality early in the layout design flow. To over-
come the difficulty of obtaining high-quality human

layout training data, MAGICAL was used to generate

multiple layout solutions for the same circuits auto-

matically. An effective placement feature extraction

method with 3-D convolution neural network was

developed for effective placement quality predic-

tion. The number of training data needed to obtain

satisfactory classification results was significantly

reduced by leveraging transfer learning.

Efficient layout synthesis with Bayesian
optimization

The works of Liu et al. [12] extended the default

MAGICAL framework considering custom con-

straints and design-specific considerations. It lev-

erages post layout simulations in driving the layout

implementation process for building block circuits.

By formulating the performance optimization as a

multiobjective black-box optimization problem, it

closes the design loop and guarantees post layout

performance through iterative simulations and a

data-efficient Bayesian optimization algorithm.

Since system-level transistor simulation is unaf-

fordable, Liu et al. [12] optimized the system-level

layout by extending the original MAGICAL frame-

work to include custom constraints and design

specific considerations. Specific constraints and con-

siderations include net criticality, routing sequence,

net spacing assignments, and regularized signal

flow paths. The layout for a complete ADC system

with regularized signal flow paths were generated,

achieving close to schematic simulation results.

Figure 2. OTA results. (a) Circuit schematic. (b) Manual layout. (c) MAGICAL layout.

24 IEEE Design&Test

Open-Source EDA

Experimental results
The MAGICAL flow is implemented in Python

and C/C++, and the experiments are performed on
a Linux server with an 8-core 3.4-GHz Intel CPU and
32-GB memory. All designs are in TSMC 40-nm tech-
nology. The layout results are validated using Calibre
DRC/LVS/PEX, and evaluated using Cadence Virtu-
oso ADE simulation environment.

The post-layout simulation results for two bench-
mark circuits, a two-stage operational transconduct-
ance amplifier (OTA), and a continuous time ∆Σ
modulator (CTDSM), are shown in Figures 2 and 3,
respectively. The circuit performances of the OTA
layout results generated by MAGICAL are compared
against tape-out quality manual layouts by experi-
enced analog IC designers, under the same test bench
suites. The simulation results are shown in Table 1,
where UGB stands for the unity gain bandwidth, PM
denotes the phase margin, and CMRR denotes the
common-mode rejection ratio. The simulation results
for the CTDSM are shown in Table 2, where Fs denotes
the sampling frequency, BW is the bandwidth, SNDR

denotes the signal-to-noise and distortion ratio, and

SFDR denotes the spurious-free dynamic range. The

results demonstrate that MAGICAL can automatically

generate validated layouts from unannotated cir-

cuit netlist (both Spectre and HSPICE format), and

the post-layout performances are close to the sche-

matic designs. Some performance metrics, includ-

ing input-referred offset and CMRR, could be further

improved by extensively considering layout depend-

ent effects, minimizing coupling to sensitive nets, etc.

Future directions
Being part of the open-source hardware/EDA eco-

system, the future development of the MAGICAL will

both benefit from and contribute to the community.

Although the existing components in different open-

source EDA tools may have different algorithms and

methodologies, there are some overlapping between

their functionality. Both analog and digital layout

automation flows share many common infrastruc-

tural components with MAGICAL. MAGICAL can learn

from the recent emerging open-source EDA tools.

Besides the EDA tools, open-sourcing AMS cir-

cuit designs is another driving force for analog

layout automation. On the one hand, lacking of

training data has been a major challenge in machine

learning-based EDA algorithm. On the other hand,

the lack of a unified test circuit benchmark suite

makes it difficult to evaluate and compare different

analog EDA tools. Open-source designs will not only

make it possible for the EDA tools to have common

Figure 3. CTDSM results. (a) System architecture.
(b) MAGICAL layout.

Table 2. CTDSM simulation results.

Table 1. OTA simulation results.

25March/April 2021

evaluation metrics, but also provide training data for
machine learning-based EDA algorithms.

While MAGICAL has demonstrated satisfactory
results, it currently only minimizes post-layout circuit
performance degradation implicitly by considering
the analog layout constraints. Although direct opti-
mization methods have been applied and demon-
strated to be effective, the overhead of repetitive
simulations is still expensive and impractical, espe-
cially for system-level designs. In the future research
and development, MAGICAL will investigate into the
performance-aware techniques, especially machine
learning algorithms, throughout its entire flow.

Preliminary simulation results have also demon-
strated the potential of generating entire system-level
designs with MAGICAL. However, MAGICAL still needs
to improve its current placement and routing algo-
rithms for better design rule handling. Furthermore,
there is still large room for improvement, especially
for system-level designs, including circuit reliability,
clock coupling mitigation, IR drop aware routing,
and integration with digital flows. Generating tape-out
quality layout designs proven with silicon chip meas-
urements will be the future goal of MAGICAL.

in This arTicle, we presented MAGICAL, an open-
source fully automated end-to-end analog IC layout
system from circuit netlists to GDSII layouts. Human
and machine intelligence are strategically incorpo-
rated into MAGICAL by pattern matching and deep
learning techniques. The circuit performances of the
layouts completed by MAGICAL are close to those
handcrafted by experienced designers, while the
design cycle is shortened substantially.

Acknowledgments
Hao Chen, Mingjie Liu, Biying Xu, and Keren

Zhu contributed equally to this work. This work was
supported in part by the National Science Founda-
tion (NSF) under Grant 1704758 and in part by the
DARPA IDEA program.

 References
 [1] M. P.-H. Lin, Y.-W. Chang, and C.-M. Hung, “Recent

research development and new challenges in analog

layout synthesis,” in Proc. 21st Asia South Pacific Design

Autom. Conf. (ASP-DAC), Jan. 2016, pp. 617–622.

 [2] J. Crossley et al., “BAG: A designer-oriented integrated

framework for the development of AMS circuit

generators,” in Proc. IEEE/ACM Int. Conf. Comput.-

Aided Design (ICCAD), Nov. 2013, pp. 74–81.

 [3] K. Kunal et al., “ALIGN: Open-source analog layout

automation from the ground up,” in Proc. 56th Annu.

Design Autom. Conf., Jun. 2019, pp. 1–4.

 [4] T. Ajayi et al., “Toward an open-source digital flow: First

learnings from the OpenROAD project,” in Proc. 56th

Annu. Design Autom. Conf., Jun. 2019, pp. 1–4.

 [5] B. Razavi, Design of Analog CMOS Integrated Circuits,

1st ed. New York, NY, USA: McGraw-Hill, 2001.

 [6] M. Eick et al., “Comprehensive generation of

hierarchical placement rules for analog integrated

circuits,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 30, no. 2, pp. 180–193, Feb. 2011.

 [7] M. Liu et al., “S3DET: Detecting system symmetry

constraints for analog circuits with graph similarity,”

in Proc. 25th Asia South Pacific Design Autom. Conf.

(ASP-DAC), Jan. 2020, pp. 193–198.

 [8] B. Xu et al., “MAGICAL: Toward fully automated analog

IC layout leveraging human and machine intelligence:

Invited paper,” in Proc. IEEE/ACM Int. Conf. Comput.-

Aided Design (ICCAD), Nov. 2019, pp. 1–8.

 [9] B. Xu et al., “WellGAN: Generative-adversarial-

network-guided well generation for analog/mixed-

signal circuit layout,” in Proc. 56th Annu. Design Autom.

Conf., Jun. 2019, pp. 1–6.

 [10] K. Zhu et al., “GeniusRoute: A new analog routing

paradigm using generative neural network guidance,”

in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design

(ICCAD), Nov. 2019, pp. 1–8.

 [11] M. Liu et al., “Towards decrypting the art of analog

layout: Placement quality prediction via transfer

learning,” in Proc. Design Autom. Test Eur. Conf.

Exhibition (DATE), Mar. 2020, pp. 496–501.

 [12] M. Liu et al., “Closing the design loop: Bayesian

optimization assisted hierarchical analog layout

synthesis,” in Proc. DAC, Jul. 2020, pp. 1–6.

Hao Chen is currently pursuing a PhD with the
Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX. His
research interests include physical design, CAD for
analog/mixed signal designs, logic synthesis, and
emerging technology. Chen has a BS in electrical
engineering from the National Taiwan University,
Taipei, Taiwan (2019).

Mingjie Liu is currently pursuing a PhD with the
Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX. His
research interests include applied machine learning

26 IEEE Design&Test

Open-Source EDA

intelligence hardware. Li has a PhD from The
University of Texas at Austin, Austin, TX (2018).

Yibo Lin is an Assistant Professor with the
Computer Science Department, Peking University,
Beijing, China. His research interests include physical
design, machine learning, and GPU acceleration.
Lin has a PhD from the Electrical and Computer
Engineering Department, The University of Texas at
Austin, Austin, TX (2018).

Nan Sun is currently a Professor with the Department
of Electronic Engineering, Tsinghua University, Beijing,
China. His current research interests include analog,
mixed-signal, and RF integrated circuit design, and
analog circuit design automation.

David Z. Pan is currently a Silicon Laboratories
Endowed Chair of electrical engineering with the
Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX. His
research interests include cross-layer nanometer
IC design for manufacturability, reliability, security,
machine learning and hardware acceleration, design/
CAD for analog/mixed signal designs and emerging
technologies.

for design automation and layout design automation
for analog and mixed-signal integrated circuits.

Biying Xu is currently a Lead Software Engineer
with Cadence Design Systems, San Jose, CA.
Her research interests include physical design
automation for digital, analog, and mixed-
signal integrated circuits. Xu has a PhD from
the Department of Electrical and Computer
Engineering, The University of Texas at Austin,
Austin, TX (2019).

Keren Zhu is currently pursuing a PhD with
the Department of Electrical and Computer
Engineering, The University of Texas at Austin,
Austin, TX. His research focuses on VLSI CAD.
Zhu has a BS in electrical engineering with the
highest distinction from the University of Wisconsin-
Madison, Madison, WI.

Xiyuan Tang is currently a Postdoctoral
Researcher with The University of Texas at Austin,
Austin, TX. His research interests include digitally
assisted data converters, low-power mixed-signal
circuits, and analog data processing. Tang has a
PhD in electrical engineering from The University of
Texas at Austin (2019).

Shaolan Li is currently an Assistant Professor
with Georgia Tech, Atlanta, GA. His research
interests include analog and mixed-signal IC design,
solid-state medical imaging platform, and artificial

 Direct questions and comments about this article to
David Z. Pan, Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin,
TX 78712 USA; dpan@ece.utexas.edu.

272168-2356/21©2021 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2021

Editor’s notes:
This article presents an open-source EDA flow for digital asynchronous
circuits, capable of supporting many different families of asynchronous
circuit families from logic synthesis all the way down to GDSII.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 Scalable computer SyStemS are designed
as a collection of modular components that com-
municate through well-defined interfaces. The inter-
faces must be robust to delays and uncertainty in the
physical implementation of communication. This
view applies to computer systems at many levels of
abstraction. The Internet is a collection of communi-
cating computers with message passing through the
Internet protocol. A modern datacenter is a collec-
tion of servers that communicate via message pass-
ing over commodity network hardware. Even large
software systems consist of a collection of modules
that use well-defined application programming inter-
faces (APIs) to communicate. Almost all computer
systems disciplines have made the wise choice to
partition their problem into components that com-
municate via protocols that are independent of their
physical realization—such as timing, energy, or size.

An Open-Source EDA
Flow for Asynchronous
Logic
Samira Ataei, Wenmian Hua, Yihang Yang,
and Rajit Manohar
Yale University

Yi-Shan Lu, Jiayuan He, Sepideh Maleki,
and Keshav Pingali
University of Texas at Austin

However, in current
chip designs, this modular
approach is abandoned in
favor of global synchrony.
A global synchronization
signal (the “clock”) dic-
tates the time budget for
every step of the compu-
tation—regardless of what

is being computed.
Although this clocked design paradigm dominates

the design of computers today, engineers are strug-
gling to preserve the fiction of simultaneity required
by the clock, even within an individual chip. This
struggle is an inevitable result of advancing technol-
ogy. As transistors get smaller and faster, the delay of
communication over wires dominates the cost of local
computation with transistors. Such progress renders
the clocked paradigm a poorer and poorer abstraction
for chip design. Modern application-specific integrated
chips (ASICs) are designed as a collection of small-
clocked “islands” that communicate via interfaces that
break the clocking abstraction.

To address this challenge, we are creating a col-
lection of open-source electronic design automation
(EDA) tools that isolate the designer from the details
of the physical implementation technology, especially
when it comes to delays and timing uncertainty.1

1 It is not possible to entirely decouple the logical correctness of a design from tim-
ing to create completely delay-insensitive circuits [1], [2]. However, it is possible to
make a very mild and local timing assumption that is easy to satisfy in practice [3].

Digital Object Identifier 10.1109/MDAT.2021.3051334
Date of publication: 13 January 2021; date of current version:
8 April 2021.

28 IEEE Design&Test

Open-Source EDA

The approach is based on an asynchronous, modular,
and hierarchical design methodology for complex
chips, and it permits component reuse from one
technology to another with little or no modification.
While individual modules of the chip can be clocked,
the overall system uses an asynchronous integration
approach to achieve modular composition. Hence,
the EDA flow being developed supports a combina-
tion of timing styles in an integrated framework.

The algorithmic complexity of some of the impor-
tant steps in an EDA flow is higher when analyzing
asynchronous circuits, which can have a major
impact on the overall runtime of the flow. To reduce
the turn-around time for designs, we are implement-
ing parallel versions of the key algorithms in the
toolchain, using the Galois system described in the
“Parallelism: The Galois framework” section. The
Galois system supports the parallelization of irregu-
lar algorithms such as those in which the key data
structures are graphs and hypergraphs. Since circuits
can be viewed as hypergraphs, the Galois system is
well-suited for this parallelization effort.

Asynchronous logic: A unified approach
There are a large number of different asynchronous

logic families. Historically, each of these families was
developed by different research groups, with differ-
ent terminology and design methodologies. Note that
this is not that different from synchronous logic; any
textbook on synchronous digital logic will describe a
large number of options for synchronous design such
as pseudo-nMOS logic, precharge logic, dual-rail dom-
ino logic, and self-resetting logic to name just a few
options [4]. In addition, many circuit options for flip-
flops and latches are also described, and the merits
of each discussed. Heterogeneity of this nature is dif-
ficult to incorporate into any automated design flow.

Instead, over the years, the mainstream industrial
strength ASIC flow that is provided by the major EDA
vendors converged on a core synchronous EDA
flow that supported a limited set of options. Today
those options include flip-flop and (some) latch-
based designs with excellent support for single-clock
designs, and limited support for heterochronous
designs. Circuit options were ignored in favor of
standard-cell libraries with hand-optimized circuit
layout for individual cells (an individual CMOS gate
or a small collection of gates). This push was driven
by industry and resulted in the standardization of
what is viewed as the commercially supported ASIC

flow today. Standardization led to interoperability
and a rich intellectual property (IP) ecosystem. Mod-
ern ASIC design is as much about system integration
as it is about writing the detailed hardware descrip-
tion language that describes the chip.

The same cannot be said about asynchronous
logic. The convergence that occurred in the synchro-
nous domain did not occur in the asynchronous logic
domain, and hence the EDA landscape for asynchro-
nous logic is quite bleak in comparison. While there
have been many academic tools developed for indi-
vidual steps needed to go from a high-level description
of an asynchronous design to a chip implementation,
only a small number of complete flows have been
developed. Example flows developed for asynchro-
nous design include Haste [5] and Balsa [6], and
more recently Proteus [7]. Each of these flows sup-
ports a restricted style of asynchronous design and
uses commercial synchronous tools for physical
design automation. Since the synchronous physical
design tools do not have a correct view of timing for
asynchronous logic, conservative work-arounds are
used to constrain the design to ensure a valid imple-
mentation. This approach has also been adopted by
many academic groups to leverage the investment
made by the commercial EDA industry.

Unified approach to asynchronous logic
Instead of developing an asynchronous logic

flow that only supports a particular flavor of asyn-
chronous logic (a survey of some approaches can
be found in [8]–[10]), the approach we adopt tack-
les the problem of heterogeneity of design styles and
circuit approaches.

Commonalities
 Since one of the goals of adopting an asynchro-

nous approach is to create a modular design style,
all the different approaches generally share the char-
acteristic that a design is partitioned into a collec-
tion of concurrently operating hardware modules
(we call them processes, adopting the term from the
concurrent computing literature) that communicate
with each other using well-defined protocols on wire
bundles (we call the bundles channels). Channels
are used both for exchanging information as well
as synchronization between processes. To support
this abstraction, we use a hardware specification
notation called CHP (for communicating hardware
processes), an extension of Hoare’s communicating

29March/April 2021

sequential processes (CSP) language [11]. This is
the highest level of abstraction and corresponds to
a behavioral description of the asynchronous chip.
A CHP description can be translated into different
asynchronous logic families.

Differences
The origin of a large number of differences between

varying approaches to asynchronous design stems from
differing assumptions about timing. Purely delay-insen-
sitive circuits make no assumptions about the delays
of gates or wires. This is an extremely robust approach
and requires at least two output gates to be expressive
enough [12]. No timing constraints have to be speci-
fied in this case. Quasi-delay-insensitive circuits and
speed independent circuits require a timing assump-
tion called the isochronic fork [2], which translates to
a wire delay versus path delay assumption [3]. Bun-
dled-data communication protocols require one wire
(the request) to be slower than the data wires. Even
though there is a large range of timing requirements,
many of them can be expressed using a generalization
of two approaches to specific timing constraints. The
first is the approach used by synchronous timers to
express hold time constraints for generated clocks. If
a signal gc is a generated clock, and it is connected
to two flip-flops, then the hold time constraint for the
generated clock is a “point of divergence” constraint,
where—starting from a root point—the maximum
delay through one path has to be slower than the min-
imum delay through another path (see Figure 1). If the
actual delay values are known, then .sdc constraints
like set_min_delay and set_max_delay can be
used to constrain the maximum and minimum delay
on two paths so that they are ordered as required by
the hold time constraint [13].

A second approach used by the asynchronous
design community is generalized relative timing
[14]. In this approach, constraints are specified on
signal transition events. Hence, a point-of-divergence
constraint would be expressed by using gc↑ as the
anchor event and then using signal transitions at the
input to the flip-flop from Figure 1. The challenge
with using events (unlike paths in the synchronous
case) is that events might have data-dependent
occurrences. Also, if a signal can have switching
hazards, it might result in more than one event cor-
responding to the change in the point of divergence.

To address these issues, we introduce a general
version of both these notions that we call timing forks.

A timing fork resembles a point-of-divergence con-
straint, except that it need not be a point of divergence.
A timing fork a+ : b− < c+ is a constraint that specifies
an error predicate. In any execution of the circuit, if the
sequence a+ followed by c+ followed by b− occurs
without an intervening a+, then the constraint is vio-
lated. This timing fork is based on recent research in
the distributed systems literature that argues that events
can be ordered only if there is a visible set of timing
forks [15]. For isochronic forks, we need a notion of
the near and far end of a wire; we augment the syntax
of timing forks so that we can specify an input rather
than the output of a gate. It should be clear that tim-
ing forks can express point-of-divergence constraints in
a straightforward fashion. What is less obvious is that
even when there is not a local point-of-divergence, one
must exist at some point in the execution history in the
absence of any absolute notion of time [15].

Bundled data asynchronous communication uses a
request line and a data bundle, where the data bundle
signals have to be stable once the request goes high in
the most straightforward version of the protocol. The
communication is initiated by control logic; suppose
that c goes high to initiate the communication, the
request signal is req, and di is one of the data signals.
The timing constraint would be written c+ : di <
req+. Note that a scenario where di does not change
is also permitted by the meaning of a timing fork. We
distinguish between multiple uses of the same set of
bundled data wires because c+ will occur between
each use of the wires.

The synchronous timing constraint shown in
Figure 1 can be expressed using this notation in the
following way: “gc+ : FF.CK+ < FF.D.” This
states that any changes in the D pin of FF must occur
after the CK pin goes high, where FF is the instance
name of the flip-flop on the right-hand side in Figure 1.

Figure 1. Hold-time point-of-divergence constraint for
generated clock gc.

30 IEEE Design&Test

Open-Source EDA

Since our timing constraints can specify both
synchronous and asynchronous timing constraints,
the flow supports a design with a mixture of synchro-
nous and asynchronous components. In particular,
timing forks are sufficiently expressive to describe
the timing constraints needed for quasi-delay-insen-
sitive circuits, GasP pipelines [16], bundled data
communication, and high-speed transition signaling
pipelines [17] to name a few circuit families.

Asynchronous circuit toolkit framework
The flow we have developed includes a design

language called asynchronous circuit toolkit (ACT).
ACT is a hierarchical design language that includes
communication channels and encoded data values
as first-class objects. The language supports represent-
ing circuits at multiple levels of abstraction, includ-
ing CHP, gate-level, and transistor-level descriptions.
ACT is strongly typed, and the type system is used to
track and specify many design constraints that tradi-
tionally are externally specified in commercial flows
(e.g., using .sdc files). Timing forks can be included
as part of the logic specification.

By using an integrated language that can be
used at multiple levels of abstraction, we preserve
the relationships between different levels of abstrac-
tion in the design throughout the design flow. These
relationships are captured using ACT’s type system.
Timing constraints between modules can be speci-
fied in the type-definition of communication chan-
nels—i.e., in the interface specification captured by
the type signature of a component. Design tools can
be viewed as transformations in the ACT framework.
For example, logic synthesis elaborates a CHP-level
description of a module into a gate-level description
of the same module without changing its interface.
Hence, constraints generated by logic synthesis are
made available to the rest of the flow as part of the
ACT language, and hence are visible to both timing
analysis and place-and-route tools.

The history of this language can be traced to the Mini-
MIPS project at Caltech, Pasadena, CA (1994–1999),
where a simplified version of ACT was developed
by Manohar to manage the design complexity of the
MiniMIPS asynchronous processor design [18]. This
language, called CAST (for Caltech Asynchronous syn-
thesis tools), was used to implement a microprocessor
at the gate level of abstraction. This language was used
both by Manohar’s group at Cornell as well as a startup
company (Fulcrum Microsystems). CAST continued

to evolve at Fulcrum Microsystems, which was even-
tually acquired by Intel in 2012; as part of their devel-
opment, Fulcrum also developed the Proteus flow [7].
The ACT language was created in 2005 as an evolution
of CAST, and to overcome some of its limitations. This
language was also used by Achronix Semiconductor,
and to develop a number of chips at Cornell and Yale.
An open-source version of this early version of ACT was
also released [19]; these early versions of ACT were
only designed to support quasi-delay-insensitive asyn-
chronous circuits.

The current ACT language [20] is the result of an
evolution over almost three decades of research in
asynchronous design grounded in the implementa-
tion of over a dozen asynchronous VLSI chips ranging
in complexity from 0.5M transistors [21] to 5.4B tran-
sistors [22], and in technologies ranging from 0.6-µm
CMOS to 28-nm CMOS. It is general enough to be able
to express a wide range of asynchronous logic fam-
ilies and is the basis for the open-source EDA flow
described in the “Open-source flow” section.

Keeping designs open
Our implementation of the ACT framework

includes a number of configuration files. We have
partitioned these files into two disjoint sets: 1) tech-
nology-independent and 2) technology-specific. The
information in the technology-specific files corre-
sponds to items that may be covered by nondisclo-
sure agreements with foundries, and thus may not
be distributed without the appropriate agreements
in place. However, the goal is to ensure that the vast
majority of the design can be distributed without
reference to the details of the underlying technol-
ogy. Hence, while some of our tools cannot operate
without detailed information from the foundry, the
original logical design specified in the ACT frame-
work can be distributed without any embedded
foundry-specific information because this informa-
tion is isolated to an input configuration file.

Integrating synchronous logic and other tools
The ACT tools are focused on supporting asyn-

chronous logic families. However, we expect that a
complex system would require integration with other
logic styles—in particular, synchronous logic. Since
commercial EDA tools provide outstanding support
for design styles commonly used by industry, we
do not directly target synchronous logic in the ACT
framework. Instead, we provide support for importing

31March/April 2021

a design as a Verilog netlist. Importing synchronous
logic or asynchronous logic from other flows into the
ACT framework also requires that timing constraints
for imported signals be specified using timing forks.

Module-level integration is the most straightfor-
ward way to import a Verilog netlist; this also permits a
designer from maximizing the use of mainstream tools.
Our timing analysis engine will determine that the syn-
chronous logic and asynchronous logic are in different
timing domains [23], and simply report timing for the
different components separately. This is analogous to
the scenario of an unrelated clock domain crossing
that can occur in conventional EDA tools.

Asynchronous logic generated by any other
approach can also be imported as long as the design
is specified as a Verilog netlist, and the required tim-
ing constraints specified as timing forks. The ACT
language also supports direct specification of logic
using gates specified as pull-up and pull-down net-
works, by passing the CHP level of circuit descrip-
tion and the Verilog import process.

Parallelism: The Galois framework
Reducing the turn-around time of this design

flow without sacrificing the quality of results is crit-
ical for future designs. We believe this goal can be
achieved by parallelizing the core EDA algorithms.
Since circuits can be viewed abstractly as graphs
and hypergraphs, a system for supporting the design
and implementation of a parallel EDA tool-chain
must have the following characteristics.

· It must support clean abstractions for reasoning
about and expressing the available parallelism in
graph (and hypergraph) algorithms.

· It must hide parallelization details such as syn-
chronization from EDA algorithm designers.

· It must be scalable; as long as the algorithm
has sufficient parallelism, performance should
improve if more cores are used.

Operator formulation of algorithms
A clean abstraction for expressing parallelism

in graph algorithms is the operator formulation, a
data-centric abstraction in which algorithms are
described as a composition of a local view and a
global view of the computation.

The local view is described by an operator, which
is a graph update rule applied to an active node in
the graph (some algorithms have active edges).

Each operator application, called an activity or
action, reads and writes a small region of the graph
around the active node, called the neighborhood of
that activity. Figure 2 shows active nodes as filled
dots, and neighborhoods as clouds surrounding
active nodes, for a generic algorithm.

An active node becomes inactive once the activity
is completed. Morph operators can modify the graph
structure of the neighborhood by adding and removing
nodes and edges. And-inverter graph (AIG) rewriting
[24] deploys morph operators. Label computation oper-
ators, in contrast, only update labels on nodes and edges
without changing the graph structure. Field programma-
ble gate array (FPGA) routing [25], formulated as a sin-
gle-source shortest path problem (SSSP) within a routing
resource graph, uses label computation operators.

The global view of a graph algorithm is captured by
the location of active nodes and the order in which activ-
ities must appear to be performed. Topology-driven algo-
rithms make a number of sweeps over the graph until
some convergence criterion is met, for example, the Bell-
man–Ford SSSP algorithm. Data-driven algorithms begin
with an initial set of active nodes, and other nodes may
become active on the fly when activities are executed.
They terminate when there are no more active nodes.

Figure 2. Operator view of algorithms in
Galois.

32 IEEE Design&Test

Open-Source EDA

Dijkstra’s SSSP algorithm is a data-driven algorithm. The
second dimension of the global view of algorithms is
ordering [26]. Activities in unordered algorithms such as
SSSP can be performed in any order without violating
program semantics, although some orders may be more
efficient than others.

Parallelism can be exploited by processing active
nodes in parallel, subject to neighborhood and
ordering constraints. The resulting parallelism is
called amorphous data parallelism. It is a generaliza-
tion of the standard notion of data parallelism [27].

Galois system
The Galois system implements this data-centric

programming model (see details in [28]). Application
programmers write programs in sequential C++, using
certain programming patterns to highlight opportu-
nities for exploiting amorphous data parallelism. The
Galois system provides a library of concurrent data
structures, such as parallel graph and work-list imple-
mentations, and a runtime system. The data structures
and runtime system ensure that each activity appears
to execute atomically. In this way, the Galois system
encapsulates parallelization details and realizes perfor-
mance scalability at the same time.

The Galois system has been used to implement
parallel programs for many problem domains
including finite-element simulations, n-body meth-
ods, graph analytics, intrusion detection in networks
[29], FPGA routing [25], and AIG rewriting [24].

Open-source flow
The key steps of the design flow we have devel-

oped are as follows:

· design elaboration/expansion, which expands
the design and customizes it based on parame-
ters specified by the user [20];

· technology mapping and gate generation, which
identifies the unique gates needed to implement
the asynchronous circuit and generates the lay-
out for the cells, if a new gate is found in the
design [30], [31];

· static timing analysis, which implements the asyn-
chronous equivalent of timing analysis, determines
the performance/power of the design, and checks
any timing constraints needed for correctness [31];

· design partitioning and floor-planning;
· asynchronous timing-driven placement [32], [33];
· timing-driven global routing [34], followed by

detailed routing to complete the physical imple-
mentation.

The rest of the steps are standard, including insert-
ing fill and adding the pads and seal ring. The flow is
summarized in Figure 3. To inter-operate with commer-
cial tools, at key steps we can import/export designs
using standard formats such as a Verilog netlist, simula-
tion program with integrated circuit emphasis (SPICE)
netlist, and library exchange format (LEF)/design
exchange format (DEF). We also accept parasitic infor-
mation via standard parasitic exchange format (SPEF)
files, and timing information using the .lib format. All
the tools—both those under development and those
ready for use—will be distributed at [35].

Timing and power analysis
We have implemented a static timing analysis engine

for asynchronous logic. Since asynchronous logic might
have nonstandard gates, we also implemented a cell
characterization engine that uses SPICE simulations to
create .lib files for individual gates. The characterizer
computes both delay and power tables for the gates.

Timing is one of the biggest differences between
developing an asynchronous EDA flow and a syn-
chronous EDA flow. Asynchronous timing has
to handle cyclic circuit structures. Our timing
analysis flow includes the following major steps:
1) creating an event-based timing graph for the
asynchronous design from a gate-level representa-
tion; 2) estimating steady-state slew rates in cyclic Figure 3. Design flow for asynchronous logic.

33March/April 2021

circuits; 3) analyzing the cycles in the event-based
representation, and computing the critical cycle
ratio which is a good metric of performance for
the asynchronous circuit; 4) computing arrival
time and required time for asynchronous circuits,
and hence computing the performance slack for
each node of the timing graph; and 5) computing
the slack for timing forks.

When importing a design from a different flow
as a “black box,” the timing graph fragment for the
module must be included in the import (analogous
to .lib files in synchronous logic). If a module is
imported using a gate level netlist with timing forks,
the event graph can be computed by our timing
analysis engine.

Once event transitions are identified, we also
compute the power consumption of the circuit.
Since many of the steps needed by power analysis
are the same as for timing analysis, we have inte-
grated the two into a single unified engine.

The time complexity of timing analysis is much
higher than in the synchronous case because of step
(3), which computes the critical cycle ratio. We use
the parametric shortest path algorithm to compute
this ratio [36], which provides better run-time per-
formance than previous approaches that use linear
programming when the circuit size is large [31].
Another source of complexity is that the periodic-
ity of an asynchronous circuit may not be from one
iteration to the next. Instead, a circuit might have an
unfolding factor M, where the circuit timing is only
periodic every M iterations [37], [38]. When M is
high, timing propagation has to be performed on a
graph that is logically the M -fold unfolding of the
cyclic graph.

We have implemented our timing analysis engine
using the Galois framework described in the “Paral-
lelism: The Galois framework” section. Our current
implementation parallelizes the following parts of
the full timing analysis: slew rate estimation, arrival
time/required time, performance slack, and timing
fork slack. The current runtime of our timing engine
is shown in Table 1 with example circuits ranging
from 0.3M –5.6M pins. The sequential runtime for
large designs would be quite prohibitive—above 48
minutes for the largest example. However, the Galois
framework can transparently speed up our runtime
by large factors; for the largest example, we achieve
almost 20× speedup, resulting in a more manageable
runtime of roughly 2.5 minutes.

The same timing propagation core can be used to
perform timing analysis for synchronous circuits, and
hence, we can compare the performance obtained
using the Galois approach to parallelization versus
existing synchronous timing analysis engines that
support multithreaded execution. Table 2 shows
the result of this comparison against OpenTimer, an
open-source synchronous timing analysis engine that
supports multithreaded execution [39], demonstrat-
ing that our parallel timing analysis core achieves
good parallel performance.

Partitioning and floorplanning
For large designs, we have implemented a min-

cut-based approach to floorplanning and design
partitioning. To this end, we have developed a deter-
ministic, parallel hypergraph-based partitioner using
the Galois framework.

Our implementation uses the multilevel graph
partitioning framework, where the original hyper-
graph is subjected to a number of coarsening steps

Table 1. Runtime of static timing analysis implemented using the
Galois framework on a 56-core Intel Xeon server. The numbers
in parentheses specify the number of threads used to obtain the
best runtime. “bd203*” is a bundled-data sample design; the
others are heavily pipelined and desynchronized versions of
their synchronous counterparts.

Table 2. Performance comparison of our timing engine core
against a recent open-source synchronous timing analysis engine
(OT = OpenTimer). The numbers in parentheses specify the
number of threads used to obtain the best runtime. All times are
in milliseconds.

34 IEEE Design&Test

Open-Source EDA

to create a much smaller hypergraph. The small
hypergraph is then subjected to an initial partition-
ing. Finally, the small hypergraph is expanded out to
the original graph by inverting the coarsening steps,
and in each step, the partition is further refined.

Experimental results on a 28-core Intel Xeon show
that our partitioner achieves 7× speedup for hyper-
graphs with roughly ten million nodes and 4–6×
speedup for hypergraphs with 2–3 million nodes.

Placement
Asynchronous circuits make use of a wide range

of gates, especially state-holding gates that have
pull-up and pull-down networks that are not com-
plementary. The unbalanced pull-up and pull-down
combined with keeper circuits for state-holding
gates can lead to an inefficient layout using tradi-
tional single/double height standard cells. To alle-
viate this potential inefficiency, we have adapted
existing standard-cell-based placement algorithms
to account for cell heights that need not be uniform.
We call this approach gridded-cell layout, where
cells can have both height and width that is an inte-
ger multiple of a routing track [32]. Many techniques
have been adapted for this nonstandard height cell
layout approach, and new algorithms developed for
both fast legalization and well-alignment in the pres-
ence of nonuniform cell heights.

Experimental results show that our current
placer implementation is capable of handling large
designs, with a performance that is almost an order
of magnitude faster than commercial placers while
suffering a 13% (geometric mean) quality loss when
measured in terms of half-perimeter wire length.

When comparing standard cell versus nonstandard
height cells for asynchronous logic, we found that our
placement approach can improve density by 10%–17%
compared to commercial standard-cell placers [32].

Global routing
The last major piece of the flow that we are devel-

oping is a parallel global router. We have developed
SPRoute, a Galois-based parallel implementation of
the FastRoute [40] global router. We use FastRoute
because it has good sequential performance for the
global routing problem.

SPRoute uses a novel two-phase parallel scheme to
achieve good speedup. In the initial phase, SPRoute
exploits net-level parallelism. In this approach, differ-
ent nets are routed in parallel. This proceeds until there

is congestion because of a lack of routing resources.
This phase can achieve significant speedup because
uncongested regions do not have any resource con-
flicts and thus net routing can proceed in parallel.
Once congestion is detected, SPRoute switches to fine-
grained parallelism where parallelism is exploited for
frontier exploration during maze routing.

This scheme achieves 11× speedup with 0.6%
quality of results reduction on a 28-core machine
when compared to the baseline FastRoute imple-
mentation [34].

After global routing, the rest of the flow can pro-
ceed using standard tools since all the major deci-
sions that impact timing have been accounted for
during placement and global routing. Figure 4 shows
the routed design of a simple asynchronous bench-
mark circuit, where the detailed router used was a
commercial tool. Note that the placement does not
use the standard cell rows.

Memory compiler
The last major missing ingredient is a high-quality

memory compiler. Almost every digital ASIC requires
memory, and asynchronous designs are no different.
While many commercial memories include self-
timed internal access, standard memory compilers
provide a “black box” implementation that only pro-
vides a synchronous interface.

Figure 4. Routed example design in a
65-nm process. Detailed routing was
performed using a commercial EDA tool.

35March/April 2021

To address this challenge, we have built an
asynchronous memory compiler (AMC) [41] that
is based on the OpenRAM framework [42]. AMC
makes a number of changes to the design of the
SRAM it generates compared to its baseline Open-
RAM implementation: 1) it uses asynchronous logic
to implement the control, and therefore provides
an asynchronous interface to the core memory;
2) it supports pipelined memory access for multi-
banked memories with multiple in-flight transac-
tions, where bank access is interleaved to improve
effective throughput; 3) it supports subbanking
with a hierarchical word-line structure to improve
access time and reduce power consumption; 4) it
supports technologies up to 28 nm, including thin
cell and foundry cell bit-cells; and 5) it supports an
atomic read-modify-write operation, which takes
significantly less time than a read followed by a
write. AMC includes a built-in self-test engine, as
well as synchronous wrapper circuits (at reduced
performance). Our comparisons show that the
memories generated by AMC are competitive with
published designs in the literature, as well as the
memories available from the foundry [41].

Current status
We currently have a flow that can be used to design

and implement quasi-delay-insensitive asynchronous
circuits, as well as a restricted set of bundled-data cir-
cuits. The memory compiler has successfully been
used to build memories in 65, 28, and 12 nm process
technologies, as well as older technology nodes. The
full flow has been exercised to design a mixed qua-
si-delay-insensitive/bundled data 65 nm ASIC and a
28 nm ASIC is in progress. The key additional work
needed to support a richer class of asynchronous
circuits is a more general timing analysis engine fron-
tend. While the core timing analysis engine imple-
ments the algorithms needed for asynchronous timing
analysis, the frontend that generates the input for the
analysis engine is currently being improved so that it
can support a richer set of asynchronous circuit fami-
lies. The rest of the physical design flow supports any
asynchronous logic family. Finally, we are working on
tighter integration of the timing analysis engine with
all the steps in the design flow.

We have embarked on developing a high-quality
open-source design flow for asynchronous circuits. In
doing so, we developed a unified timing methodology

that can handle both synchronous and a number of
different asynchronous circuit families. By building
this timing abstraction into all the key EDA tools, our
goal is to create an extensible framework where EDA
developers can easily support new circuit families.

Significant work is still required both for improv-
ing the run-time performance of certain aspects of
the flow, as well as improving the quality of results
of the design. Some of the major ongoing efforts
include: improving the accuracy of timing analysis,
as well as its run-time performance in the presence
of millions of timing constraints; better incorpo-
ration of timing information into both placement
and routing, as well as buffer insertion when timing
constraints cannot be met during place and route;
improved cell generation when a circuit is not found
in the standard library; and extending configuration
files and algorithms to support the requirements of
sub-10-nm designs.

Acknowledgments
This work was supported by the DARPA IDEA Pro-

gram under Contract FA8650-18-2-7850.

 References
 [1] R. Manohar and Y. Moses, “The eventual C-element

theorem for delay-insensitive asynchronous circuits,” in

Proc. 23rd IEEE Int. Symp. Asynchronous Circuits Syst.

(ASYNC), May 2017, pp. 102–109.

 [2] A. J. Martin, “The limitations to delay-insensitivity in

asynchronous circuits,” in Proc. 6th MIT Conf. Adv. Res.

VLSI, W. J. Dally, Ed., 1990, pp. 263–278.

 [3] R. Manohar and Y. Moses, “Analyzing isochronic forks

with potential causality,” in Proc. 21st IEEE Int. Symp.

Asynchronous Circuits Syst. (ASYNC), May 2015,

pp. 69–76.

 [4] N. H. Weste and D. Harris, CMOS VLSI Design: A

Circuits and Systems Perspective. London, U.K.:

Pearson, 2010.

 [5] S. F. Nielsen et al., “A behavioral synthesis frontend to

the haste/TiDE design flow,” in Proc. 15th IEEE Symp.

Asynchronous Circuits Syst. (ASYNC), May 2009,

pp. 185–194.

 [6] D. Edwards and A. Bardsley, “Balsa: An asynchronous

hardware synthesis language,” Comput. J., vol. 45,

no. 1, pp. 12–18, 2002.

 [7] P. A. Beerel, G. D. Dimou, and A. M. Lines, “Proteus:

An ASIC flow for GHz asynchronous designs,” IEEE

DesignTest. Comput., vol. 28, no. 5, pp. 36–51, Sep. 2011.

36 IEEE Design&Test

Open-Source EDA

 [8] S. Hauck, “Asynchronous design methodologies: An

overview,” Proc. IEEE, vol. 83, no. 1, pp. 69–93, Jan. 1995.

 [9] S. M. Nowick and M. Singh, “Asynchronous design–-

Part 1: Overview and recent advances,” IEEE Design

Test. Comput., vol. 32, no. 3, pp. 5–18, Jun. 2015.

 [10] S. M. Nowick and M. Singh, “Asynchronous design–-

Part 2: Systems and methodologies,” IEEE Design

Test. Comput., vol. 32, no. 3, pp. 19–28, Jun. 2015.

 [11] C. A. R. Hoare, “Communicating sequential processes,”

Commun. ACM, vol. 21, no. 8, pp. 666–677, 1978.

 [12] R. Manohar and Y. Moses, “Asynchronous

signalling processes,” in Proc. 25th IEEE Int. Symp.

Asynchronous Circuits Syst. (ASYNC), May 2019.

 [13] S. Gangadharan and S. Churiwala, Constraining Designs

for Synthesis and Timing Analysis. New York, NY, USA:

Springer, 2013.

 [14] S. A. Seshia, R. E. Bryant, and K. S. Stevens,

“Modeling and verifying circuits using generalized

relative timing,” in Proc. 11th IEEE Int. Symp.

Asynchronous Circuits Syst., 2005, pp. 98–108.

 [15] A. Dan, R. Manohar, and Y. Moses, “On using time

without clocks via zigzag causality,” in Proc. ACM

Symp. Princ. Distrib. Comput., Jul. 2017, pp. 241–250.

 [16] I. Sutherland and S. Fairbanks, “GasP: A minimal FIFO

control,” in Proc. 7th Int. Symp. Asynchronous Circuits

Syst. (ASYNC), 2001, pp. 46–53.

 [17] M. Singh and S. M. Nowick, “MOUSETRAP: Ultra-high-

speed transition-signaling asynchronous pipelines,”

in Proc. IEEE Int. Conf. Comput. Design VLSI Comput.

Processors (ICCD), 2001, pp. 9–17.

 [18] A. J. Martin et al., “The design of an asynchronous

MIPS R3000 microprocessor,” in Proc. 17th Conf. Adv.

Res. VLSI, 1997, pp. 164–181.

 [19] D. Fang. “Hierarchical asynchronous circuit kompiler

toolkit.” Accessed: Jan. 8, 2021. [Online]. Available:

https://github.com/fangism/hackt/

 [20] R. Manohar. “Asynchronous circuit toolkit.” Accessed:

Jan. 8, 2021. [Online]. Available: https://github.com/

asyncvlsi/act/

 [21] C. T. O. Otero et al., “ULSNAP: An ultra-low power

event-driven microcontroller for sensor network

nodes,” in Proc. 15th Int. Symp. Qual. Electron. Design,

Mar. 2014, pp. 667–674.

 [22] F. Akopyan et al., “TrueNorth: Design and tool flow of a

65 mW 1 million neuron programmable neurosynaptic

chip,” IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 34, no. 10, pp. 1537–1557, Oct. 2015.

 [23] R. Manohar, “Exact timing analysis for asynchronous

circuits with multiple periods,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 39, no. 10,

pp. 3134–3138, Oct. 2020.

 [24] V. Possani et al., “Unlocking fine-grain parallelism for AIG

rewriting,” in Proc. Int. Conf. Comput.-Aided Design,

Nov. 2018, pp. 1–8.

 [25] Y. O. M. Moctar and P. Brisk, “Parallel FPGA routing

based on the operator formulation,” in Proc. 51st Annu.

Design Autom. Conf. (DAC), 2014, pp. 1–6.

 [26] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered

vs. unordered: A comparison of parallelism and work-

efficiency in irregular algorithms,” in Proc. 16th ACM

Symp. Princ. Pract. Parallel Program. (PPoPP), 2011,

pp. 3–12.

 [27] K. Pingali et al., “The tao of parallelism in algorithms,”

in Proc. PLDI, 2011, pp. 12–25.

 [28] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight

infrastructure for graph analytics,” in Proc. 24th ACM

Symp. Operating Syst. Princ. (SOSP), Nov. 2013,

pp. 456–471.

 [29] A. Lenharth, D. Nguyen, and K. Pingali, “Parallel graph

analytics,” Commun. ACM, vol. 59, no. 5, pp. 78–87,

Apr. 2016.

 [30] R. Karmazin, C. T. O. Otero, and R. Manohar, “CellTK:

Automated layout for asynchronous circuits with

nonstandard cells,” in Proc. IEEE 19th Int. Symp.

Asynchronous Circuits Syst., May 2013, pp. 58–66.

 [31] W. Hua et al., “Cyclone: A static timing and power

engine for asynchronous circuits,” in Proc. 26th IEEE

Int. Symp. Asynchronous Circuits Syst. (ASYNC), May

2020, pp. 1–9.

 [32] Y. Yang, J. He, and R. Manohar, “Dali: A gridded cell

placement flow,” in Proc. 39th Int. Conf. Comput.-Aided

Design, Nov. 2020, pp. 1–9.

 [33] R. Karmazin et al., “Timing driven placement for quasi-

delay-insensitive circuits,” in Proc. 21st IEEE Int. Symp.

Asynchronous Circuits Syst., May 2015, pp. 45–52.

 [34] J. He et al., “SPRoute: A scalable parallel negotiation-

based global router,” in Proc. IEEE/ACM Int. Conf.

Comput.-Aided Design (ICCAD), Nov. 2019, pp. 1–8.

 [35] S. Ataei et al. “Asynchronous VLSI and architecture

group.” Accessed: Jan. 8, 2021. [Online]. Available:

https://github.com/asyncvlsi/

 [36] N. E. Young, R. E. Tarjant, and J. B. Orlin, “Faster

parametric shortest path and minimum-balance

algorithms,” Networks, vol. 21, no. 2, pp. 205–221,

Mar. 1991.

 [37] W. Hua and R. Manohar, “Exact timing analysis

for asynchronous systems,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 37, no. 1, pp.

203–216, Jan. 2018.

37March/April 2021

 [38] H. Hulgaard et al., “An algorithm for exact bounds on

the time separation of events in concurrent systems,”

Dept. Comput. Sci. Eng., Univ. Washington, Seattle,

WA, USA, Tech. Rep. 94-02-02, 1994.

 [39] T.-W. Huang and M. D. F. Wong, “OpenTimer: A high-

performance timing analysis tool,” in Proc. IEEE/ACM

Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2015,

pp. 895–902.

 [40] M. Pan et al., “FastRoute: An efficient and high-quality global

router,” VLSI Design, vol. 2012, pp. 1–18, Aug. 2012.

 [41] S. Ataei and R. Manohar, “AMC: An asynchronous memory

compiler,” in Proc. 25th IEEE Int. Symp. Asynchronous

Circuits Syst. (ASYNC), May 2019, pp. 1–8.

 [42] M. R. Guthaus et al., “OpenRAM: An open-source

memory compiler,” in Proc. 35th Int. Conf. Computer-

Aided Design, Nov. 2016, pp. 93:1–93:6.

Samira Ataei is an Associate Research Scientist
with Yale University, New Haven, CT. Her research
interests include memory design for end-of-the-
roadmap silicon, memory compiler, in-memory/near-
memory computing, and computer architecture. Ataei
has a PhD in electrical engineering from Oklahoma
State University, Stillwater, OK (2017).

Wenmian Hua is currently with Synopsys Inc.
Mountain View, CA. His research interest includes
timing and performance analysis of asynchronous
circuits. Hua has a PhD in electrical and computer
engineering from Cornell University, Ithaca, NY (2020).

Yihang Yang is currently pursuing a PhD with
Yale University, New Haven, CT. His research interest
includes asynchronous VLSI design and its physical
design automation. Yang has an MASc in electrical
and computer engineering from the University of
Waterloo, Waterloo, ON, Canada (2017).

Rajit Manohar is the John C. Malone Professor
with the electrical engineering and computer science,
Yale University, New Haven, CT. His research

interest includes the design and implementation of
asynchronous circuits and systems. Manohar has a
PhD in computer science from Caltech.

Yi-Shan Lu is currently pursuing a PhD with the
Department of Computer Science, University of Texas
at Austin, Austin, TX. His current research focuses
on parallelization and language design for domain
specific computation, for example, EDA. Lu has
a master degree in computer science from NTHU,
Hsinchu, Taiwan (2011). He is a Student Member of
ACM.

Jiayuan He is currently pursuing a PhD in
computer science from the University of Texas at
Austin, Austin, TX. His research interests include
parallel computing on multicore CPUs and GPUs,
graph analytics, and place and route in EDA. He
has a BE in electrical engineering and a second
bachelors in economics from Tsinghua University,
Beijing, China (2014).

Sepideh Maleki is currently pursuing a PhD
(fifth year) with Computer Science Department,
University of Texas at Austin, Austin, TX. Her research
interests includes graph analytics, high performance
computing, electronic design automation (EDA),
and programming languages. Maleki has a master’s
degree in computer science from Texas State
University, San Marcos, TX.

Keshav Pingali is the W.A. “Tex” Moncrief Chair
of Computing and the CEO of Katana Graph. Pingali
has a PhD from MIT, Cambridge, MA. He is a Foreign
Member of the Academia Europeana, a Distinguished
Alumnus of IIT Kanpur, India, and a Fellow of ACM,
IEEE, and AAAS.

 Direct questions and comments about this article
to Rajit Manohar, Computer Systems Lab,Yale
University, New Haven, CT 06520-8267 USA;
rajit.manohar@yale.edu.

38 2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Open-Source EDA

Editor’s notes:
This article demonstrates that complete open-source tooling can be used
to design industrial quality digital circuits. Using the OpenLane framework,
based itself on the OpenROAD tool 2, the authors show a complete set of
RISCV-based SoC.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 Over the past 35 years, a number of academic
open-source hardware design tools have been availa-
ble; most notably SPICE, SIS/VIS, and Magic from the
Berkeley EECS Department, which has a long history
in open-source EDA tools. Other notable academic
contributions include IRSIM from Stanford, netcomp
from Caltech, and TimberWolf from Yale (originally
also Berkeley) [1], [2]. Some of these tools remain
popular among integrated circuit (IC) designers
and used over the years to address specific design
tasks. But complete design flows and methodologies
were missing until recently. The past five years have
seen rapid development and emergence of several
important, complete open-source EDA tool flows for
the development of end-to-end ASIC designs. These
flows have been enabled by the coincident emer-
gence of open-source EDA tools for field-program-
mable gate array (FPGA) synthesis, as well as repos-
itories of open-source digital designs both general
(as found on the website opencores.org) and spe-
cific to the RISC-V open instruction set architecture

Real Silicon Using
Open-Source EDA
R. Timothy Edwards
Efabless Corporation

Mohamed Shalan
The American University in Cairo

Digital Object Identifier 10.1109/MDAT.2021.3050000
Date of publication: 27 January 2021; date of current version:
8 April 2021.

(ISA) from Berkeley EECS. FPGA design
enjoys the benefit of a more soft-
ware-like tool flow, where designs can
be tested and debugged in simulation
or in situ. Both FPGA and digital ASIC
design share the same front-end flow of
digital synthesis. The robust and capa-
ble synthesis tool Yosys [3] has formed
the backbone of open-source EDA tool
flows for both FPGA and ASIC develop-

ment. For ASIC development, additional tools are
needed to complete additional critical tasks such
as memory (RAM) compiling, analog modeling and
simulation, floor planning, chip integration, power
analysis, design for test (DFT), design rule checking
(DRC), and layout versus synthesis (or schematic)
checking (LVS).

In this article, we show a progression of work in
tools, flows, reference designs, and an overall eco-
system in which we have been able to demonstrate
the practical use of available open-source EDA tool
flows to design, manufacture, and validate chips
with first-time success. We have attempted to keep
these designs open-source from end to end; this fact
distinguishes the authors’ efforts from other groups
working on ASIC flows, as we start with open hard-
ware descriptions (e.g., the RISC-V ISA), and use
open-source tools (e.g., Qflow), and make all of the
tools and the reference designs available for use on
an open platform (https://efabless.com) that is free
(as in beer, as the saying goes) to register, access,
and use, and free (as in freedom) of the usual con-
fidentiality agreements constraints of that typically
exist between the ASIC designer, commercial EDA
tool vendor, and foundry.

Mohamed Kassem
Efabless Corporation

39March/April 2021

Although we make use of many tools and designs
from many sources, inevitably we cannot fit them all
into a single working flow. So while our work empha-
sizes Qflow and OpenROAD, we do not wish in any
way to discount or detract from other important
flows in use and under development, such as Corio-
lis [5], and tools both new (such as DrCU [6]), which
we have not had the opportunity to investigate, and
established (such as OpenTimer) for which we hap-
pen to have an acceptable alternative.

Qflow
One of the authors (Edwards) has been instru-

mental in keeping a number of the long-surviving
open-source EDA tools alive and modernized with
continual development and publicly available
repositories for the past 25 years. Noting the lack
of open-source digital synthesis flows (of which
bits and pieces existed, but no complete end-to-
end flow), he put together some tools (such as the
aforementioned Berkeley SIS/VIS, TimberWolf, and
Magic) evolved from a script-based system written
by then-colleague Steve Beccue, good for making
small digital blocks in the context of mixed-signal
systems. He posted this on his website opencircuit-
design.com [2] and called it “Qflow” (Figure 1).

In short, Qflow is a complete tool chain for synthe-
sizing digital circuits starting from verilog hardware
description language (HDL) and ending in physical
layout (in industry-standard GDSII format) for a spe-
cific target fabrication process. Qflow is an evolving
and adaptable set of tools that aims to make use of
any open-source component that can be made to
work within the flow. Qflow incorporates Yosys for
the front-end synthesis, Graywolf (a fork of Timber-
Wolf) for digital standard cell placement, and clock
tree synthesis (CTS, which unusually for digital syn-
thesis flows is integrated into the placement tool);
Vesta (an original tool written for Qflow) for static
timing analysis (STA), and Qrouter (also an original
tool written for Qflow) for global and detailed rout-
ing. Layout is completed in the editing tool Magic,
which does DRC, circuit extraction and netlist gen-
eration, and final GDS format output generation.
Extracted layout is checked against the synthesized
netlist using the tool Netgen for final verification.

Raven microcontroller
Raven is one of the designs that are implemented

using Qflow. The choice of architecture for the

Raven processor (Figure 3a) was dictated by design
IP availability and the tool flow capacity. To keep
fabrication costs down, we selected an established
0.18 µm process; in addition to the low cost, the
mature node is well suited for analog design, and a
number of silicon-proven analog circuits are avail-
able from the foundry. The addition of analog to
digital converters (ADCs), digital to analog convert-
ers (DACs), comparators, and temperature sensors
makes the offering of a small embedded processor
appealing. For the processor architecture, we chose
the RISC-V ISA because there is a growing body of
open-source designs available for use. Although typ-
ically designed for FPGAs, they are easily adapted to
an ASIC design.

We chose the PicoRV32 [7] core, written by
Claire Wolf, due to its popularity and proven ver-
ification using FPGAs. The implementation is
well-parameterized, with options for a number of
RISC-V features such as a hardware multiplier, barrel
shifter, and compressed instruction set. With most

Figure 1. QFlow.

40 IEEE Design&Test

Open-Source EDA

options selected, the size of the processor core
(including registers but excluding SRAM) is around
15k gates, well within the range of Qflow’s placement
and routing tools to handle. The primary design work
on the Raven chip consisted of moving the memory
array out of the core Verilog module, allowing use of
an SRAM circuit provided by the foundry through use
of an online memory compiler. We made selections
from available analog and digital circuits and mem-
ory-mapped them to the processor core. We chose
not to use a bus architecture for this design, mainly
for simplicity and a faster time to tape-out. We used
Qflow to synthesize the PicoRV32 core and a house-
keeping SPI slave used to query and control signals
related to power and clocking, mainly as a risk-miti-
gation measure, synthesized with 3.3 V-tolerant logic
so that it could be outside of the core 1.8 V-voltage
domain. Some additional tasks were to make the
crystal oscillator and voltage regulator compatible
with the six-metal back-end stack (selected because
of its support in X-FAB multiproject wafer runs), and
support 3.3-V domain circuits with padframe spac-
ers and fast level shifters. To verify the design, we
created “real-valued” verilog modules for the analog

components and simulated the chip and environs
[external SPI flash chip for program storage, and
universal asynchronous receiver/transmitter (UART)
for communications] using iverilog, the popular and
capable open-source verilog simulation tool devel-
oped by Stephen Williams [8]. We leveraged the
RISC-V community’s work in creating a GNU gcc
compiler toolchain for the RISC-V architecture, cre-
ating a suite of testbench programs written in C and
compiled to machine code files which are “loaded”
onto the SPI flash chip emulation model during sim-
ulation. The suite of verification tests exercise the
various analog circuits, digital general purpose digi-
tal input/output (GPIO), SRAM memory access, and
all other major system components.

Qflow does not have a floorplanner and its
router is not configured for top-level routing. Floor-
planning consisted mostly of determining how the
analog blocks would be best arranged around the
digital core, with ample room for power routing,
then applying pin position constraints on the core
and resynthesizing. The chip top level was routed by
hand using the Magic layout editor, a task that took
about three days of work. Magic was used to verify
the layout for DRC and LVS, with final verification
done by the foundry during tape-in. The only design
checks not caught by Magic were antenna viola-
tions; these checks have since been added both to
Qrouter and to Magic.

We submitted the Raven chip for fabrication in
August 2019 and received samples in December.
We had the device packaged and designed a test
circuit board, and had verified working silicon by
the end of January. The overall design time was
long due to the concurrent development of EDA
tools and the efabless platform, but the entire
design cycle from concept to working silicon was
less than a year. The Raven SoC and its test benches
including those that use software programming are
published on Github (https://github.com/efabless/
raven-picorv32).

CloudV SoC workflow
While Qflow suffices to generate layout of single dig-

ital blocks up to the complexity of a small processor, it
does not handle high-level system descriptions. A num-
ber of tools are being developed for that purpose. Since
they generate standard verilog code from a high-level
description, they are not on the roadmap of Qflow devel-
opment. To introduce high-level system descriptions to

Table 1. Design flow evolution.

41March/April 2021

the flow, we made use of CloudV [9], a software sys-
tem developed by one of the authors (Shalan) which
introduces templates for selecting and assembling the
components of an SoC architecture, and a GUI-based
front-end for the SoC design process. In the CloudV
flow, Qflow was retained for the back-end design with
the corresponding manual labor for floorplanning and
top-level routing.

As shown in Figure 2, the SoC design workflow
in CloudV provides means for hardware IP design-
ers, software developers, SoC architects, and SoC
verification engineers to collaborate on a new
design. The CloudV web-based IDE can be used to
capture, simulate, and verify RTL designs in verilog
HDL. After synthesis and mapping to a standard cell
library, CloudV reports estimates of the layout area,
clock speed, and power. The verified design can be
packaged and placed in a common repository to be
used by the SoC editor.

The SoC editor is a rule-based editor that enables
SoC architects to design an SoC around a specific
CPU and bus architecture (currently supporting the
ARM Cortex M0 CPU and AMBA busses) using a
library of open-source and proprietary IPs, as well
as IPs created by designers collaborating on the
project. The supported AMBA busses are AHB-Lite,
AXI4-Lite, and APB. The architect need not worry
about the details of how the IPs are wired as it is
handled “behind the scenes” by the SoC editor.
The architect may configure the SoC components
if applicable; for example, the base address of each
peripheral, the peripheral interrupt request line
(IRQ) number(s), etc. Once the SoC design is com-
pleted, the SoC editor generates a set of outputs
that help hardware and software development.

• The top-level verilog net list needed for simula-
tion and SoC assembly.

• Intermediate files to communicate with other
CloudV modules (e.g., memory map, linker script,
and device driver configuration).

The SoC compiler converts the captured SoC
architecture into HDL files need for implementation
as well as C language header files and device driv-
ers for the selected peripherals. Also, it generates
startup code and the make file and linker scripts
needed for software development. Using CloudV
IDE, the software engineer can develop firmware for
the designed SoC using the GNU C/C++ tool chain.

Finally, CloudV simulates the SoC running the com-
piled firmware, automating the validation step.

Raptor microcontroller
We created the Raptor microcontroller as a ref-

erence design for the SoC flow using CloudV. Also,
we wanted to demonstrate the implementation of
a closed-source core (the ARM Cortex M0) within
a larger open-source digital design, using a bus
architecture to bridge the two. We contracted a
third-party design house to synthesize, place, and
route the M0 processor using a commercial tool
flow. We then created CloudV templates for use
with the M0 core and bus architecture, describing
a number of blocks in a mixedmode architecture
similar to the Raven chip. The templates comprised
both purely digital subcircuits such as SPI and I2C
bus masters, and timer/counter circuits; and mixed
mode circuits with bus interfaces to the analog cir-
cuit blocks (ADC, DAC, comparator, etc.) provided
by the foundry. The SoC compiler then generated a
verilog netlist for the core digital design, including
bus interfaces, and a verilog netlist describing the
chip top level, including both digital and analog
components, and the entire padframe. CloudV val-
idated the design with system-level simulation of a
full software test suite.

We used a new GUI python script to do floor-
planning. Although this method lacks automated
optimization, we could position and orient the
padframe pad cells and core cells, and generate
the (unrouted) top level layout automatically.

Figure 2. SoC flow.

42 IEEE Design&Test

Open-Source EDA

We trained a third-party partner design house in the
use of Magic, and they were able to complete the
top-level signal and power routing in the span of
approximately one week.

The Raptor chip (Figure 3b) was part of an
aggressive design schedule to get three microcon-
troller designs onto a dedicated wafer run on the
X-Fab XH018 process. This gave us less time than

the Raven chip for the entire design flow, which
again included both flow development (as the SoC
generator and templates were developed concur-
rently) and chip design. The designs taped out in
September 2019 and returned from fabrication in
December. We had all three microcontrollers pack-
aged, assembled on demonstration boards, and
tested by the end of January. All were successful,
although the most important success was the Rap-
tor chip with the new design flow.

OpenLane flow
Throughout the design phase of the Raven and

Raptor chips, we were aware of the development of
a new set of open-source tools called OpenROAD
with the capacity to perform synthesis, placement,
and routing on designs orders of magnitude larger
than the small embedded processors we had built
with Qflow. As the OpenROAD developers began
releasing tools to the public, we began investigating
how to integrate them onto our platform. One of the
authors (Shalan) created a separate flow that is an
amalgam of OpenROAD and Qflow tools, which we
call “OpenLane” (Figure 4).

It is essentially a wrapper around OpenROAD
tools with integration into the efabless file struc-
tures for projects and foundry processes. Because
the OpenROAD project targets very high-end
foundry nodes, it was critical to ensure that we
could use the same tools with the mature processes
(mainly 0.18 and 0.13 µm) we had available on the
efabless platform.

The OpenLane flow eliminates most of the man-
ual labor on the flow back-end required with Qflow.
OpenLane makes use of the efabless floorplan-
ning script, makes use of the STA, placement, and Figure 4. OpenLane design flow.

Figure 3. Open-source SoC designs using open-source EDA tools. (a) Raven SoC.
(b) Raptor SoC. (c) StriVe SoC.

43March/April 2021

routing in OpenROAD, and includes automated
design space exploration. Because the stated pur-
pose of the OpenROAD project is under-24-hour, no-
human-in-the-loop end-to-end design, the Open-
Lane derivative will be the most advanced and
automated flow to date.

StriVe microcontroller
We are currently in progress making a reference

design called “StriVe” (Figure 3c), another RISC-V
architecture, to demonstrate the capabilities of the
OpenLane flow. StriVe itself is not (yet) a fixed defi-
nition architecture, but is expected to evolve as we
develop and refine the flow.

While the concurrent development will neces-
sarily cause a long design cycle, the promise of the
OpenROAD tools is that eventually the design cycle
using this flow can be made much shorter than any
open-source EDA flow has ever achieved to date.
In addition to exercising the OpenLane flow, we
are collaborating with other groups to be able to
have the most open-source hardware ASIC design
ever created. This includes replacing the proprie-
tary foundry SRAM with open-source SRAM circuits
created using the OpenRAM tool [10]; and open-
source analog circuit designs in collaboration with
the company Blue Cheetah, developing software
and hardware around the Berkeley analog generator
(BAG) system [11]. Ultimately, our goal is to have a
design that can be open-sourced completely end to
end, from the verilog source code and SoC templates
to the GDS format layout data. We fully expect the
StriVe microcontroller to revolutionize the concept
of open hardware.

Design flow future improvements
It is clear that the open-source EDA tools do not

have a one-to-one coverage of every design step in
the modern design methodologies (Table 1). While
we continue to collaborate with the community to
extend the coverage of the open-source EDA point
tools, we diligently apply design best practices and
precharacterized rule of thumb.

Design for test
DFT support is under development. Func-

tionality to support scan chain insertion will be
added is under development. Automatic test pat-
tern generation (ATPG) functionality will lever-
age existing open-source tools. We are currently

evaluating fault [12] as a potential open-source
DFT solution.

Formal verification
By constraining the target application to embed-

ded industrially capable microcontroller, the design
performance and gate count we can reasonably per-
form RTLvs-Gate-level verification by simulation with
sufficient test bench coverage.

Dynamic IR drop and signal integrity
Based on the constrained scope of the design

and target application, which may vary depending
on the choice of target performance metrics such
as clock frequencies <100 MHz, and relatively low
interconnect resistance for the 130/180 nm pro-
cess nodes, best practices for power grid design
and decoupling capacitor placement are applied
along with sufficient timing margins to ensure
design closure.

We aimed tO prove that any skepticism around the
use of open-source EDA tools and flows to generate
custom ASIC designs is misplaced. We have success-
fully designed, manufactured, and tested multiple
SoC microprocessor reference designs and have
a track record of proven first time-working silicon
using end-to-end open-source EDA flows. The EDA
tool development community is alive and growing,
and we have been able to leverage new tools and
methods as they have become available, incorpo-
rating them into existing flows with a flexibility that
commercial tools are not capable of. Every gener-
ation of our flows and designs has cut the time to
tape-out roughly in half. With the newest generation
of open-source EDA tools, we fully expect a design
flow that is competitive with any commercial flow,
but better able to leverage community input and
involvement. We firmly believe that open-source is
the future of ASIC design.

Acknowledgments
We would like to thank the following groups and

individuals for their contributions to this project:
the design team at Sankalp Semiconductor; Claire
Wolf, SymbioticEDA; Andrew Kahng, UCSD, and the
OpenROAD project group; Matt Guthaus, UCSC, and
the OpenRAM project group; X-Fab foundry, Erfurt,
Germany; Tim Whitfield, ARM.

44 IEEE Design&Test

Open-Source EDA

 References
 [1] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf

placement and routing package,” IEEE J. Solid-State

Circuits, vol. SSC-20, no. 2, pp. 510–522, Apr. 1985.

 [2] QFlow. Accessed: Jan. 1, 2021. [Online]. Available:

http://opencircuitdesign.com/qflow/

 [3] C. Wolf and J. Glaser, “Yosys—A free Verilog synthesis

suite,” in Proc. Austrochip, 2013, pp. 1–6.

 [4] T. Ajayi et al., “Toward an open-source digital flow: First

learnings from the OpenROAD project,” in Proc. 56th

Annu. Design Autom. Conf., Jun. 2019, pp. 1–4.

 [5] Coriolis VLSI Backend Tools. Accessed: Jan. 1, 2021.

[Online]. Available: https://www-soc.lip6.fr/equipecian/

logiciels/coriolis/

 [6] G. Chen et al., “Dr. CU: detailed routing by sparse grid

graph and Minimum-Area-Captured path search,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol.

39, no. 9, pp. 1902–1915, Sep. 2020.

 [7] PicoRV32. Accessed: Jan. 1, 2021. [Online]. Available:

https://github.com/cliffordwolf/picorv32

 [8] Icarus Verilogh. Accessed: Jan. 1, 2021. [Online]. Available:

http://iverilog.icarus.com

 [9] M. Shalan and S. Reda, “Open-source SoC workflow

in cloud V,” in Proc. Workshop Open-Source EDA

Technol. (WOSET), Nov. 2018. [Online]. Available:

https://woset-workshop.github.io/WOSET2018.html

 [10] M. R. Guthaus et al., “OpenRAM: An open-source

memory compiler,” in Proc. 35th Int. Conf. Comput.-

Aided Design (ICCAD), Nov. 2016, pp. 1–6.

 [11] J. W. Crossley, “BAG: A designer-oriented framework

for the development of AMS circuit generators,” EECS

Dept., Univ. California at Berkeley, Berkeley, CA, USA,

Tech. Rep. UCB/EECS-2014-195, Dec. 2014.

 [12] M. Gaber, M. Abdelatty, and M. Shalan, “Fault, an

open source DFT toolchain,” in Proc. Workshop

Open-Source EDA Technol. (WOSET), Nov. 2019.

[Online]. Available: https://woset-workshop.github.io/

WOSET2019.html

R. Timothy Edwards is the VP of Analog and
Platform at Efabless Corporation, San Jose, CA, as
well as a developer and maintainer of open-source
EDA tools for over 25 years, and the owner of the
website opencircuitdesign.com. Edwards has a
PhD in electrical engineering from Johns Hopkins
University, Baltimore, MD.

Mohamed Shalan is an Associate Professor
(with tenure) with the Department of Computer Science
and Engineering, American University, Cairo, Egypt.
His research interests are in the areas of hardware/
software codesign, embedded real-time systems,
digital hardware design, energy-efficient computing
systems, and electronics design automation. Shalan
has a PhD in computer engineering from Georgia
Institute of Technology, Atlanta, GA.

Mohamed Kassem is the co-founder and CTO
of Efabless Corporation, San Jose, CA. Kassem has
an MEng in electrical engineering from the University
of Waterloo, Waterloo, ON, Canada.

 Direct questions and comments about this article
to R. Timothy Edwards, Efabless Corporation, San
Jose, CA 95131 USA; tim@efabless.com; and/or
Mohamed Shalan, Department of Computer Science
and Engineering, American University in Cairo, Cairo
11835, Egypt; mshalan@aucegypt.edu.

452168-2356/21©2021 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2021

Editor’s notes:
An open-source DFT flow is essential for any open-source solution. This
article describes an approach to fill in this missing piece.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 However foolproof current EDA tools
happen to be, fabricated circuits may not function
correctly because the manufacturing process itself is
imperfect. Defects, such as short circuits and open cir-
cuits, may be introduced because of these imperfec-
tions. Therefore, manufactured circuits are typically
tested against defects before packaging, as it is crucial
to identify faulty circuits as early as possible; when the
faulty chip is soldered on a printed circuit board, the
cost of fault remedy would be multiplied by ten. This
cost factor continues to apply at every step until the
system that uses the chip is delivered to the end user,
referred to in the industry as “the rule of ten.”

Regardless the wide variety of proprietary and
commercial design-for-testability (DFT) toolchains
available, there is a surprising dearth of open-source
DFT toolchains. There are some freely available tools
with limited utility, such as the Atalanta [1] automatic
test pattern generator, which, even then, is not open
source as it has a number of usage restrictions. In
addition to the source code being freely customizable
for research purposes, the reality is that the primary

Fault: Open-Source
EDA’s Missing DFT
Toolchain
Manar Abdelatty, Mohamed Gaber, and
 Mohamed Shalan
The American University in Cairo (AUC)

purpose of open-source
software is to not only
break down the barriers
of entry to EDA develop-
ment but also provide a
publicly available tool for
research and study. Also,
while the proprietary tools

are typically available at a nominal cost to educa-
tional institutions, in the industry, they command out-
rageous, cost-prohibitive prices to startups; erecting
barriers in the EDA space and inhibiting innovation
in the field. Fortunately, the barrier to fabricating the
actual chips is slowly being broken down by projects
like OpenROAD and Google Open-Process Design Kit
(PDK), which necessitates the existence of an open-
source automated flow for DFT.

Testing of digital logic circuits involves the appli-
cation of test data (test pattern/vector) to the device
under-test (DUT) and the comparison of the result-
ing response to an expected one as produced by
a known-good model [the golden model (GM)].
Should a manufacturing defect be able to alter the
behavior of a circuit, a discrepancy would appear
between the DUT and the GM, which allows for the
DUT to be quickly pointed out as a defective chip.
At the core of this process is what is known as test
pattern generation, which aims to find a set of input
sequences that would be able to detect faulty circuits.

Test pattern generation is a complex process with
two primary aspects to optimize: 1) the cost of test
application (proportional to the testing time) and
2) the quality of the tests (coverage). In essence,
automatic test pattern generation (ATPG) software is

Digital Object Identifier 10.1109/MDAT.2021.3051850
Date of publication: 14 January 2021; date of current version:
8 April 2021.

46 IEEE Design&Test

Open-Source EDA

designed to minimize the number of generated test
vectors (TVs) (and therefore, lessen the amount of
time spent in testing) while maximizing the number
of covered fault sites to ensure that in that testing, as
many defects as possible are covered. A less impor-
tant but still significant nonrecurring engineering
cost is the time spent on generating the ATPGs: for
larger, more complex circuits especially with mil-
lions, if not billions of fault sites, the ATPGs should
also aim to minimize the amount of time taken to
generate the TV set.

DFT tools also typically include the infrastruc-
ture required for a circuit to support such testing:
because the many possible issues that may arise
during the fabrication of a hardware design require
almost any hardware written to be designed with
testability in mind. To this extent, standards have
been introduced to assist with automated testing,
most famously IEEE 1149.1 [2], which is commonly
known as Joint Test Access Group (JTAG).

The EDA research team at the American University
in Cairo has thus endeavored to create such a tool:
one that leverages existing open-source tools such as
the Yosys Open SYnthesis Suite [3], the Icarus Ver-
ilog simulator [4], and the Pyverilog [5] to deliver
a cohesive experience encompassing netlist cutting,
ATPG, static compaction all the way to scan chain
insertion, JTAG interface stitching, and verification.
We succinctly call this toolchain “Fault.” Fault is
designed and implemented to support standard EDA
formats; hence, it can be integrated into any indus-
trial RTL to graphic design system II (GDSII) flow.

Design-for-testing overview

Fault models
Because of the diversity of VLSI defects, it is dif-

ficult to generate tests for real defects. Fault models
are necessary for generating and evaluating a set of
TVs. Fault modeling is a process by which possible
fault sites can be represented and simulated behav-
iorally, regardless the actual cause. Also, it should
be computationally efficient in terms of fault simula-
tion and test pattern generation. Many fault models
have been proposed, but, unfortunately, no single
fault model accurately reflects the behavior of all
possible defects that can occur. However, the single
stuck-at fault model is widely used and considered
the de facto standard fault model as it has been used
successfully for decades.

Stuck-at-faults
A stuck-at fault affects the state of logic signals on

connections in a logic circuit, including primary inputs
(PIs), primary outputs (POs), internal gate inputs and
outputs, fanout stems (sources), and fanout branches.
We refer to them as fault sites. Generally, the number
of fault sites is equal to the sum of number of PIs, the
number of gates, and the number of fanout branches.
A stuck-at fault transforms the correct value on the
faulty signal line to appear to be stuck at a constant
logic value, either a logic 0 or a logic 1, referred to as
stuck-at-0 (SA0) or stuck-at-1 (SA1), respectively.

Delay faults
A delay fault is described as a fault that is not

inherently structural, rather, it is a fault that prevents
the device from operating at the desire clock speed.
While chips with structural imperfections are obvi-
ously undesirable, chips that cannot run at the spec-
ified clocking requirements are also functionally
useless, that is, outside of a limited class of gener-
al-purpose computing hardware that does not need
determinism, making stuck-at faults not completely
sufficient for circuit testing. Of particular interest is
the so-called transition fault model, which is easy to
implement by modifying stuck-at ATPG software [6].

Combinatorial equivalence
As the vast majority of VLSI circuits are sequential, the

stuck-at faults are, by nature, limited as a register would
typically lie between an input and an output, making it
so a stuck-at fault would typically not propagate from an
input to output, therefore, making tests useless. There-
fore, a method must be utilized to somehow bypass the
registers for the purposes of TV generation and testing.
There are two methods used: one while generating TVs,
which is register cutting, and another for fabricating the
actual chip, which is the use of a scan chain.

Cutting
“Cutting” the circuit refers to the act of replacing

every D-flipflop with an input and an output so they
can be easily accessed while generating test pat-
terns. As shown in Figure 1, each flip-flop’s output
becomes an input for the rest of the circuit and each
flip-flop’s input becomes an output for the rest of the
circuit. In that manner, it is possible to test all inter
register logic by manipulating the register outputs
as desired and evaluating the register inputs along-
side testing regular inputs and outputs. The circuit

47March/April 2021

generated by this process is ephemeral; however, it is
only used for pattern generation and then discarded.

Scan chain generation
To utilize these test patterns, which also include the

registers with actual circuits, the circuits must include
some manner of infrastructure to allow the manipula-
tion of register values: both writing the “inputs” and
reading the “outputs.” This is typically approached
by connecting all the registers in a circuit in a process
known as scan chain stitching, where every register
is serially connected to another register in the circuit
forming a full serial chain. A test-mode pin is usually
added to multiplex between the regular interregister
logic and scan chain logic. The scan chain is self-ver-
ifying: simply scanning a pattern in and out fully is
sufficient to ensure that not only the scan chain is func-
tional but also ensure that all registers in the circuit are
functional as well: failing to scan a pattern in and out
is in itself a quick way to realize that a circuit is faulty.

Automatic test pattern generation
Test generation is the task of producing an effec-

tive set of TVs that will achieve high fault coverage
for a specified fault model. In general, ATPG tools
differ by the used fault model and the approach or
algorithm used for the TVs generation approach.

The other key characteristic of ATPG is the
method used to generate the TVs. Random test gen-
eration (RTG) is the simplest method for generating
TVs. TVs are randomly generated and fault-simulated
(simulated in the presence of faults) till a reasonable
high fault coverage by the TVs is achieved.

There are also a number of ATPG algorithmic
 methods that are in wide use today, including the
D-algorithm, the path-oriented decision making
(PODEM), and the fan-out oriented algorithm (FAN)
[7]. Pattern generation through any of these algo-
rithmic methods requires what is known as path
sensitization; which refers to fault activation and
propagation by finding a path in the circuit that will
allow a fault to show up and propagate to an observ-
able output of the circuit if it is faulty.

For the example circuit shown in Figure 2,
the ATPG process identifies eight fault sites {A, B,
C, d, e, f, g, Y}, and 16 stuck-at faults. To simulate
stuck-at faults, the ATPG constructs a faulty model
for each generated TV by forcing each fault site to
be stuck-at zero and stuck-at one. Then, the output
of the faulty model is compared to the GM output

and discrepancies mark a fault as detectable by
the applied TV. For example, applying the input
sequence {1,0,1}, while forcing node e to be stuck-at
one, would produce an incorrect circuit result which
means e’s stuck-at one fault is detectable by the
applied TV. However, forcing e to be stuck-at zero
would result in a correct circuit output meaning that
e’s stuck at zero fault is not detectable by the applied
vector. This process is repeated for all sites, for each
generated vector, and then coverage is computed.

Figure 1. Converting a sequential circuit
to a combinational circuit by “cutting.”
The inputs are marked in red and outputs
are in blue.

Figure 2. ATPG example. The fault sites
are lettered.

48 IEEE Design&Test

Open-Source EDA

Fault toolchain
Fault operates on synthesized netlists in Verilog and

is made up of five components: Cut, PGen, Compact,
Chain, and Tap. Figure 3 shows the typical design flow
of Fault. First, the flattened netlist is converted into a
pure combinational design using Cut. This modified
netlist is used for the ATPG process done by PGen
which outputs the final coverage and the generated
TVs in a javascript object notation (JSON) format. The
generated TV set is then compacted by Compact that
reduces the number of the generated TVs without
affecting the coverage. Finally, scan chain insertion is
done by Chain and a JTAG controller is stitched to the
inserted scan chain by Tap.

Cut
Using Pyverilog [5], the flattened netlist flip-flops are

removed converting the sequential design into a pure
combinational design. The new netlist has an extra
input port for every removed flip-flop output pin and an
extra output port for every removed flip-flop input pin.

PGen
PGen is used to perform ATPG for stuck-at faults.

The stuck-at fault model assumes that manufacturing
defects cause nodes to be stuck at logic zero or logic
one. PGen uses pseudorandom ATPG coupled with
fault simulation. This is a simpler alternative to algo-
rithmic methods such as PODEM and D algorithms.
Algorithmic methods require “path sensitization,”
which makes them complex to handle netlists mapped
using any arbitrary standard cell library. In PGen, TVs
are pseudorandomly generated then simulated. PGen

generates a testbench, for every generated TV, that
compares a GM to a model where fault sites are pro-
gressively injected using Verilog force statements. The
outputs of both models are compared, and any fault
site that can be marked as detectable using said TV
is sent back to Fault to be marked as covered. PGen
stops generating TVs when either the target coverage
or the maximum number of TVs has been reached.
Final coverage is then output to a file in a ubiquitous
and easy to manipulate JSON format.

Compact
Reduces the size of the TV set using static compac-

tion while maintaining the coverage percentage of the
initial test set. The compaction is needed to reduce
the testing time; hence, reducing the cost. The com-
paction process is illustrated in Algorithm 1. It starts
with two sets: the initial TV set, generated by the ATPG,
along with its covered faults and an empty compacted
TV set. First, essential TVs (i.e., ones that cover at least
one fault not covered by any other TV in the set) are
added to the compacted set unadulterated, while the
initial test set has the essential fault points removed.
Then, the TV with the highest number of detectable
faults is inserted in the compacted set and the faults
covered by that vector are removed from the initial
test set. This process is repeated until the compacted
set covers all previously detected faults.

Chain
Performs scan chain insertion. Chain converts

a netlist’s flip-flop cells to scan cells by adding an
abstract multiplexer definition to every flip-flop
input port using Pyverilog [5]. This definition is then
mapped by Yosys [3] to either a multiplexer (MUX)
cell from the standard cell library or a scannable

Figure 3. Fault design flow.

Algorithm 1: Static TV Compaction.

49March/April 2021

flip-flop cell if the library has one. The chain also
adds boundary scan cells for the netlist’s inputs and
outputs, then stitches all the scan cells into one scan
chain. The chained netlist has extra ports for the seri-
al-in and serial-out of the constructed scan chain in
addition to the testing control signals. Additionally,
Chain offers an option to automatically generate a
testbench to verify the scan chain integrity.

Tap
Tap adds the JTAG interface to a chained netlist

using Pyverilog. This is accomplished by adding its
five namesake test access ports (TAPs): serial test
data in (TDI), test mode select (TMS), serial test data
out (TDO), test clock (TCK), and active low test reset
(TRST). As illustrated in Figure 4 the serial-in and
serial-out of the constructed scan chain are stitched
to the TDI line and the input of the TDO line multi-
plexer respectively. Selecting a register between TDI
and TDO lines is done by shifting an instruction code
on the TDI line. For the purpose of doing on-chip
testing, a custom instruction is defined to select the
internal scan chain. The TAP controller is verified by
automatically generating a testbench wherein TVs
are shifted through the scan chain, then applied to
the onchip logic by deasserting shift for one clock
cycle, then the captured output is shifted out and
compared to the fault-free response.

Implementation
The fault is implemented in the Swift programming

language [8] as it is a statically typed, safe, native
programming language that could also interact with
and use Python-based libraries idiomatically.

Fault leverages the Swift–Python interoperability
developed by Google Inc. as part of their Swift for
Tensorflow project [9], allowing it to interface seam-
lessly with the Pyverilog library which produces an
abstract syntax tree for direct manipulation, neces-
sary for the cutting behavior, scan chain stitching,
and other things. Most logic is implemented in pure.
Swift, which, while compiled Python yields a negligi-
ble speed boost, the native programming language
is more lenient on memory usage, which is a great
boon when simulating large hardware designs.

Interfacing with Yosys and Icarus Verilog is done
via simple calls to the UNIX shell: Fault would generate
the synthesis script or testbench, respectively, call the
tool responsible and parses its output, which may be
written to either a pipe or a file, which is then read by

Fault. The fault runs many simulations in parallel and
benefits greatly from a multithreaded environment.

Despite that, however, a practical problem is
that setting up the Swift language, let alone Swift/
Python interop, is cumbersome on Linux, which is
a great concern considering cloud infrastructure
overwhelmingly runs Linux—not to mention that
the problem becomes greater while distributing for
users as Windows support for Swift is immature and
Apple does not yet provide official binaries for the
language on Windows. To help alleviate these prob-
lems, lightweight Docker images were created so
one may run Fault on any platform of their choice in
a reliable, relatively configuration-free setting.

Benchmarking and performance
We have evaluated the performance of Fault’s

flow on a number of open-source designs frequently
used as benchmarks. The coverage and runtime
are used as metrics for the ATPG process. Coverage
results were obtained by running the ATPG pro-
cess with a ceiling of 5000 TVs, an increment of ten
TVs per iteration, and minimum coverage of 97%
such that the ATPG process stops when the ceiling
count is encountered or the minimum coverage is
achieved. As shown in Figure 5a, the fault is able
to achieve 96.6% coverage on average. As shown
in Figure 5b, Fault’s runtime is moderately low for
smaller designs, but it is significantly higher for larger
designs. This is largely attributed to the ATPG prob-
lem being NP-complete [10] thus needing to gener-
ate a larger TV set to reach a reasonable coverage;

Figure 4. JTAG controller connection to a chained
netlist.

50 IEEE Design&Test

Open-Source EDA

hence, more Iverilog simulations. The fault simula-
tions were carried out on Intel Xeon-based station
running Ubuntu 18.04 long-term support (LTS) with
Fault’s native installation with an allocated RAM of
32 GB and ten threads.

Additionally, we experimented with Atalanta to
validate Fault’s stuck-at simulator. The experiment
involved generating the TVs with Atalanta, then sim-
ulating the generated vectors using Fault’s stuck-at
simulator. Since Atalanta does not support standard
EDA formats and is only compatible with a netlist in
the International Symposium of Circuits and Systems
(ISCAS) bench format, we introduced an optional
utility to Fault’s flow, bench, that takes a gate-level
netlist and the standard cell library Verilog models
as an input and generates the netlist in bench format.
This netlist was then used as an input to Atalanta.
Figure 5c shows the coverage results for Fault’s sim-
ulator and Atalanta. Fault’s coverage is slightly lower
than Atalanta; however, Fault shows an accurate cov-
erage percentage of the gate-level netlist because the
bench circuit format does not support some circuit
constructs such as being permanently grounded.

For the compaction process, the metric used is
the size of the initial TV set versus the compacted set.
As shown in Figure 5d, Fault is able to significantly
reduce large TV sets (5000) with a reduction percent

of 97.2% on average. For smaller sets, the reduction
percentage is lower because most of the generated
TVs are essential. The compaction process was also
verified by rerunning the fault simulations with the
compacted set to ensure that the coverage percent-
age is not reduced.

For the scan chain insertion and JTAG controller
stitching, the area overhead is calculated to evaluate
the penalty of DFT. As shown in Figure 5e, for smaller
designs, the area overhead is quite large (i.e., >90%)
rendering it unnecessary, however, for larger designs,
the cost of adding extra testability logic is insignifi-
cant making the strong case of the necessity of hav-
ing DFT structures for complex designs especially.

Using fault for ASIC tape-out
With the advent of open-source EDA movements,

the release of Google SkyWater PDK, and openLane
project, we are able to work on a potential tape-out
of striVe6 chip [11], a PicoRV32 SoC with testability
structure automatically injected by Fault. The fault
was able to achieve a coverage percentage of 91%
on striVe6 with 5000 TVs that were compacted to
311 TVs and verified to have the same coverage as
the original set. The scan chain and JTAG controller
were automatically constructed and verified by Fault
with an estimated area overhead of 16%.

Figure 5. Fault’s flow results. (a) Coverage versus gate count. (b) Run-time versus gate count.
(c) Fault and Atalanta coverage versus gate count. (d) Initial TV set versus compacted set
count. (e) Area overhead versus gate count.

51March/April 2021

The striVe6 exercise has revealed several chal-
lenges with Fault’s flow. First of which is how to deal
with unscannable black-box modules (like SRAM) in
the ATPG process. This was solved by extending the
Cut option to support removing black-box modules
and, like flip-flop cells, exposing the blackbox mod-
ule PIs as output ports and POs as input ports; thus
bypassing the SRAM block while testing. Additionally,
the Chain option was extended to support bypassing
black-box modules. This was achieved by adding a
wrapper scan cell to the black-box PIs and POs that
were eventually stitched to the flip-flops scan chain.
The second challenge was having flipflops with dif-
ferent clock-edge sensitivity, which affected the scan
chain integrity. This was solved by also extending the
Chain option to add an inverter to the TCK supplied
to the negative-edge triggered flip-flops.

In tHIs artIcle, we introduced Fault the first and
only practical open-source DFT toolchain compat-
ible with HDL designs. Fault toolchain provides all
needed utilities to generate TVs, simulate faults,
and insert scan chains. The fault is aiming at filing
some of the gaps in the emerging open-source EDA
ecosystem. Also, Fault provides all the needed infra-
structure for research activities in digital application
specific integrated circuits (ASIC) testing.

Future work includes ATPG acceleration by gener-
ating TVs algorithmically to improve the coverage as
well as the run-time. While the pseudo-random num-
ber generator (PRNG) demonstrated the capability
of reaching high coverage in a reasonable amount of
time, targeted TVs may yield coverage improvement
by covering fault sites the RNG failed to detect. Consid-
erations also include adding support for fault collaps-
ing, use of compiled HDL simulators such as Verilator
[12]. We have plans for supporting BIST for memory
and logic, TVs compression, and scanchain reorder-
ing. Also, we are planning to extend Fault to support
a larger variety of fault models like the transition fault
model and to add support for fault diagnostics to locate
defects and improve the yield. Additionally, we plan to
extend fault to support testability checking to detect
DFT violations like the generated clock and combina-
tional feedback loops. Finally, we will be adding sup-
port for IEEE P1687 and IEEE 1500 standards.

Acknowledgments
The Fault is publicly available under the Apache

2.0 license at https://github.com/Cloud-V/Fault,

including the benchmarks used for testing. Full instal-
lation and usage instructions are available in the
GitHub Wiki and the Readme files. It has been tested
to work with macOS 10.15 “Catalina” and Ubuntu
18.04 “Bionic Beaver.” Because of the complicated
set of dependencies required to run the toolchain,
a Docker container based on the latter platform has
been made available at https://hub.docker.com/r/
cloudv/fault. Fault is part of the CloudV Project at the
American University in Cairo (AUC), an initiative to
reshape digital design and system-on-a-chip design
education around open-source software and cloud
technologies.

 References
 [1] H. K. Lee and S. D. Ha, “On the generation of test

patterns for combinational circuits,” Dept. Elect. Eng.,

Virginia Polytech. Inst., Blacksburg, VA, USA, Tech.

Rep. 12 93, 1993.

 [2] IEEE Standard for Test Access Port and Boundary-

Scan Architecture, IEEE Standard 1149.1-2013

(Revision of IEEE Std 1149.1-2001), 2013.

 [3] C. Wolf and J. Glaser, “Yosys—A free Verilog synthesis

suite,” in Proc. Austrochip, 2013, pp. 1–6.

 [4] S. Williams. Icarus Verilog. Accessed: Feb. 5, 2020.

[Online]. Available: http://iverilog.icarus.com

 [5] S. Takamaeda-Yamazaki, “Pyverilog: A Python-based

hardware design processing toolkit for Verilog HDL,” in

Proc. Int. Symp. Appl. Reconfig. Comput., Apr. 2015,

pp. 451–460.

 [6] A. Krstić and K.-T. Cheng, “Delay fault models,” in

Delay Fault Testing for VLSI Circuits. New York, NY,

USA: Springer, 1998, pp. 23–31.

 [7] Z. Navabi, “Test pattern generation methods and

algorithms,” in Digital System Test and Testable Design

Using HDL Models and Architectures. New York, NY,

USA: Springer, 2011.

 [8] Chris Lattner and Apple Inc. The Swift Programming

Language. Accessed: Feb. 5, 2020. [Online]. Available:

https://swift.org/

 [9] Google Inc. Swift for Tensorflow. Accessed: Feb. 5,

2020. [Online]. Available: https://www.tensorflow.org/swift

 [10] M. K. Prasad, P. Chong, and K. Keutzer, “Why is ATPG

easy?” in Proc. 36th Annu. ACM/IEEE Design Autom.

Conf., Jun. 1999, pp. 22–28.

 [11] M. Shalan and T. Edwards, “Building OpenLANE: A 130

nm OpenROAD-based tapeout-proven flow,” in Proc. Int.

Conf. Comput. Aided Design (ICCAD), 2020, pp. 1–6.

 [12] Wilson Snyder. Verilator. Accessed: Jun. 15, 2020. [Online].

Available: https://www.veripool.org/wiki/verilator.

52 IEEE Design&Test

Open-Source EDA

Manar Abdelatty is a Research Associate with
the Computer Science and Engineering Department,
The American University in Cairo, Cairo, Egypt.
Her research interest includes embedded systems
and development of electronic design automation
software. Abdelatty has a bachelor’s degree from
Computer Engineering Department, The American
University in Cairo (2020).

Mohamed Gaber is a Research Associate with
the Computer Science and Engineering Department,
The American University in Cairo, Cairo, Egypt.
His research interest includes the development of
electronic design automation software. Gaber has
a bachelor’s degree from Computer Engineering
Department, The American University in Cairo (2020).

Mohamed Shalan is an Associate Professor (with
tenure) with the Department of Computer Science
and Engineering, The American University in Cairo
(AUC), Cairo, Egypt. His research interests include
OpenSource EDA, embedded systems, Internet of
Things (IoT), and low-power computing systems.
Shalan has a PhD in computer engineering from
Georgia Institute of Technology, Atlanta, GA (2003).

 Direct questions and comments about this
article to Manar Abdelatty, School of Sciences and
Engineering, The American University in Cairo, New
Cairo 11835, Egypt; manarabdelatty@aucegypt.edu.

532168-2356/20©2020 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2021

Editor’s notes:
This article proposes a new model testing and verification methodology,
PyH2, using property-based random testing in Python. PyH2 leverages the
whole Python ecosystem to build test benches and models.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 As DennArD scAling is over and Moore’s law
continues to slow down, modern system-on-chip (SoC)
architectures have been moving toward heterogene-
ous compositions of general-purpose and specialized
computing fabrics. This heterogeneity complicates the
already challenging task of SoC design and verification.
Building an open-source hardware community to amor-
tize the nonrecurring engineering effort of developing
highly parametrized and thoroughly verified hardware
blocks is a promising solution to the heterogeneity
challenge. However, the widespread adoption of open-
source hardware has been obstructed by the scarcity
of such high quality blocks. We argue that a key missing
piece in the open-source hardware ecosystem is com-
prehensive, productive, and open-source verification
methodologies that reduce the effort required to create

PyH2: Using PyMTL3 to
Create Productive and
Open-Source Hardware
Testing Methodologies
Shunning Jiang, Yanghui Ou, Peitian Pan,
Kaishuo Cheng, Yixiao Zhang,
and Christopher Batten
Cornell University

thoroughly tested hard-
ware blocks. Compared to
closed-source hardware,
verification of open-source
hardware faces several sig-
nificant challenges.

First, closed-source
hardware is usually owned
and maintained by compa-

nies with dedicated verification teams. These verifica-
tion engineers usually have many years of experience
in constraint-based random testing using a universal
verification methodology (UVM) with commercial
SystemVerilog simulators. However, open-source hard-
ware teams usually follow an agile test-driven design
approach stemming from the open-source software
community, where the designer is also responsible for
creating the corresponding tests. Moreover, the steep
learning curve, in conjunction with very limited support
in existing open-source tools, makes the UVM-based
approach rarely used by open-source hardware teams.
We argue that the open-source hardware community is
in critical need of an alternative route for testing open-
source hardware, instead of simply duplicating closed-
source hardware testing frameworks.

Second, unlike closed-source hardware’s
development cycle where most engineers focus
on a specific design instance for the next gen-
eration product, open-source hardware blocks

Digital Object Identifier 10.1109/MDAT.2020.3024144
Date of publication: 14 September 2020; date of current version:
8 April 2021.

54 IEEE Design&Test

Open-Source EDA

usually exist in the form of design generators to
maximize reuse across the community [1]. How-
ever, design generators are significantly more
difficult to verify than design instances due to
the combinatorial complexity in the multidimen-
sional generator parameter space. There is a crit-
ical need to create an open-source framework
that systematically and productively tests design
generators and automatically simplifies both
failing test cases and failing design instances to
facilitate debugging.

Third, performing random testing can be dif-
ficult in important hardware domains. There has
been a major surge in open-source RISC-V processor
implementations. However, due to limited human
resources, most of these implementations only
include a few directed tests, randomly generated
short assembly sequences, and/or very large scale
system-level tests (e.g., booting Linux). There is a
critical need to create an automated random testing
framework to improve the fidelity of open-source
processor implementations.

Fourth, many open-source hardware blocks
are designed to improve reusability by exposing
well-encapsulated timing-insensitive hand-shake
interfaces that can provide an object-oriented
view of the hardware block (e.g., a hardware reor-
der buffer exposes three object-oriented “method”
interfaces: allocate, update, and remove). How-
ever, it is very hard to perform random testing to
test the behavior of concurrent hardware data
structures that have multiple interfaces accept-
ing “transactions” in the same cycle. Converting a
random transaction sequence into cycle-by-cycle
test vectors using traditional testing approaches
requires a cycle-accurate golden model. Manu-
ally creating multitransaction test-vectors only
works for directed testing. One possible solution
is to execute only one random transaction in each
cycle, yet the inability to stress intracycle concur-
rent behavior harms the quality of the tests. There
is critical need to create a novel testing approach
for object-oriented hardware using concurrent
intracycle transactions.

To address these challenges, we introduce PyH2,1
our vision for a productive and open-source testing
methodology for open-source hardware, which is sig-
nificantly different from state-of-the-art closed-source

1Python’s hypothesis for hardware.

hardware testing. Leveraging open-source software,
PyH2 attempts to solve the open-source hardware
testing challenge by holistically using proper-
ty-based testing (PBT) in Python to significantly
reduce designer effort in creating high-quality tests.
The advantage of PBT over constraint-based random
testing is as follows.

 • PBT does not draw all of the random data before-
hand, making it possible to leverage runtime
information to guide the random data generation.

• PBT can automatically shrink the failing test case
to a minimal failing case once a bug is discovered.

Compared to BlueCheck [2], a prior PBT frame-
work for hardware, the key distinctions are as follows.

• PyH2 enables using a high-level behavioral speci-
fication written in Python as the reference model
instead of requiring the reference model to be
synthesizable.

• The random byte-stream internal representa-
tion of hypothesis provides more sophisticated
auto-shrinking, while BlueCheck simply removes
transactions along with ad hoc iterative deepening.

• PyH2 can auto-shrink not only the transactions
but also the design itself by unifying the design
parameter space and the test-case space.

We see coverage-guided mutational fuzzing
(e.g., RFUZZ [3]) as complementary to PBT. PBT
can be used to quickly find bugs with moderate
complexity, while RFUZZ can be used to very
slowly find potentially more complex bugs. Over-
all, PyH2 is able to combine the advantages of com-
plete-random testing (CRT) and iterative-deepened
testing (IDT) to identify a failing test case quickly
and then provide a minimal failing case to facilitate
debugging.

PyH2 is supported by the whole Python ecosystem,
among which three main packages form the foun-
dation of PyH2 (PyMTL3, pytest, and hypothesis).
PyH2 users can use over 100,000 open-source Python
libraries to build test benches and golden models.
PyH2 leverages PyMTL3 [4], [5] to build Python test
benches to drive register-transfer-level (RTL) sim-
ulations with PyMTL3 models and/or external Sys-
temVerilog models leveraging PyMTL3’s Verilator
cosimulation support. PyH2 adopts pytest, a mature
full-featured Python testing tool, to collect, organize,
parametrize, instantiate, and refactor test cases for

55March/April 2021

testing open-source hardware. PyH2 also exploits
pytest plugins to evaluate hardware-specific testing
metrics. For example, PyH2 tracks the line coverage
of behavioral logic blocks of PyMTL3 models during
simulation using coverage.py, a line coverage tool for
normal Python code. The key component of PyH2 is
hypothesis, a PBT framework to test Python programs
by intelligently generating random test cases and rap-
idly auto-shrinking failing test cases.

PyH2 is realized by a collection of PyH2 frame-
works which are discussed in depth in the rest of this
article: PyH2G (PyH2 for RTL design generators),
PyH2P (PyH2 for processors), and PyH2O (PyH2 for
object-oriented hardware).

Background
This section briefly introduces PyMTL3, pytest,

and hypothesis, the three key Python libraries that
form the foundation of PyH2.

PyMTL3
PyMTL3 is an open-source Python-based hard-

ware modeling, generation, simulation, and ver-
ification framework. PyMTL3 supports multilevel
modeling for RTL, cycle-level, and functional-level
models. To provide productive, flexible, and exten-
sible workflows, PyMTL3 is designed to be strictly
modular. Specifically, PyMTL3 separates the PyMTL3
embedded domain-specific language that constructs
PyMTL3 models, the PyMTL3 in-memory intermedi-
ate representation (IMIR) that systematically stores
hardware models and exposes APIs to query/mutate
the elaborated model, and PyMTL3 passes that are
well-organized programs to analyze, instrument, and
transform the PyMTL3 IMIR.

PyMTL3 aims at creating an evolving ecosystem
with its modern software architecture and high inter-
operability with other open-source tools. PyMTL3
emphasizes performing simulation in the Python runt-
ime and automatic Verilator black-box import for
cosimulation. Driving the simulation from Python test
benches to test both PyMTL3 designs and external Sys-
temVerilog modules enables PyMTL3 to combine the
familiarity of Verilog/SystemVerilog with the produc-
tivity features of Python. Tools that take the opposite
approach (e.g., cocotb) embed Python in a Verilog
simulator and drive the simulation from the Verilog
runtime, but this complicates the ability to leverage
the full power of Python. RTL designs built in PyMTL3
can be translated to SystemVerilog accepted by

commercial EDA tools, or Yosys-compatible Verilog
accepted by OpenROAD, a state-of-the-art open-
source EDA flow [6].

PyTest
pytest is a mature full-featured tool for testing

Python programs. Using pytest, the programmer
can create small tests with little effort and also
parametrize numerous complex tests with compo-
sitions of pytest decorators succinctly as shown
in Figure 1a. pytest also provides lightweight com-
mand line options to print out different kinds of error
messages varying from a list of characters indicating

Figure 1. Background on testing
methodologies. (a) Parametrizing
directed tests using a pytest decorator.
(b) Comparison of different testing
techniques. (c) Code for testing a greatest
common divisor function using CRT, IDT,
and PBT.

56 IEEE Design&Test

Open-Source EDA

whether each test fails, to per-test full stack traces.
pytest has hundreds of plugins, such as pytest-cov
that leverages coverage.py to track line coverage.

CRT, IDT, and hypothesis PBT
Traditional testing methodologies usually use a

mix of CRT and IDT. As shown in Figure 1b, CRT can
detect errors quickly because it randomly samples
the input space, but can produce very complicated
failing test cases which are difficult to debug. IDT
finds bugs more slowly because it gradually samples
the input space, but can produce simple counterex-
amples. PBT, first popularized by QuickCheck [7], is
a high-level, black-box testing technique where one
only defines properties of the program under test and
uses search strategies to create randomized inputs.
The original QuickCheck paper also discussed the
integration with Lava [8] to test circuits. Properties
are essentially partial specifications of the program
under test and are more compact and easier to write
and understand than full system specifications. Users
can make full use of the host language when writ-
ing properties and thus can accurately describe the
intended behavior. Most PBT tools support shrink-
ing, a mechanism to simplify failing test cases into
a minimal reproducible counterexample. With these
features, PBT can achieve the benefits of both CRT
and IDT.

Hypothesis [9] is a state-of-the-art Python PBT
library that includes built-in search strategies for differ-
ent data types and supports integrated auto-shrinking
of failing test cases. All hypothesis strategies are built
on top of a unified random byte-stream representa-
tion, and each strategy internally repurposes random
bytes to produce the target random value. Search
strategies in hypothesis are integrated with methods
that describe how to simplify certain types of data,
which makes shrinking effective. Users can compose
built-in search strategies for any user-defined data
type and shrinking will work out-of-the-box.

Complicated stateful systems can also be tested
with RuleBasedStateMachine in hypothesis. The
user inherits from the RuleBasedStateMachine
class to add variables, a prologue, and an epilogue
to create a new test class. The user needs to define
rules and their preconditions and invariants, which
describes conditional state transitions. For stateful
testing, usually the user creates Python assertions
inside the rule to compare against a golden refer-
ence model. Hypothesis repeatedly instantatiates

the test class and executes a sequence of rules on
the state machine.

Figure 1c shows examples of testing the great-
est common divisor function using CRT, IDT, and
hypothesis PBT against math.gcd. The CRT test
(lines 16–20) includes 100 random samples. The IDT
test (lines 22–25) iteratively tries all possible values
for a and b from 1 to 128. We use the @hypothesis.
given decorator to transform a normal function
test_property_based that accepts arguments, into
a randomized PBT test. Consider a bug where line 3
in Figure 1a is changed to while b > 10. CRT can
find the bug quickly, but the failing test case involves
relatively large numbers. IDT finds the bug in exactly
11 test cases [i.e., gcd(1,11)]. PBT can find the bug
quickly with large numbers, but then auto-shrink the
inputs to a minimal counterexample [i.e., gcd(2,1)].

PyH2G: PyH2 for RTL design
generators

PyH2G is a PyH2 framework to productively and
effectively test RTL design generators. We envision
that future open-source SoC designs are heavily based
on chip generators which are composed of numerous
highly parametrized RTL design generators. Unfor-
tunately, verifying design generators is significantly
more challenging than verifying design instances due
to the combinatorial explosion in the multidimen-
sional generator parameter space. Traditional testing
techniques such as CRT and IDT face new challenges
when testing design generators. CRT can find a bug
quickly with a few test cases but often leads to a com-
plicated failing test case with numerous transactions
and a complex design, which makes it more difficult
to debug. IDT can produce a simple failing case with
a small design instance, but may take a very long
time to detect the error due to the iterative deepening
required for the generator parameters.

In response to these challenges, PyH2G uses PBT
to obtain the benefits of both CRT and IDT. Specifi-
cally, PyH2G creates composite search strategies in
hypothesis to interpret part of the generated random
byte stream as the design parameters and the rest
as the test case (see lines 3–4 of Figure 2a). Unify-
ing the design parameter space and the test case
space allows hypothesis to simultaneously shrink
the design parameters (i.e., reducing the complexity
of the generated design instance), the length of the
input transaction sequence, and the complexity of
each transaction to a minimal failing test case.

57March/April 2021

Case study: on-chip network generator
We quantitatively evaluated CRT, IDT, and

PyH2G using the PyOCN [10] ring network gen-
erator against four real-world bugs. PyOCN is a
multitopology, modular, and highly parametrized
on-chip network generator built in PyMTL3.
Figure 2a illustrates an example of a PyH2G test
that uses search strategies to configure the ring
network and generate the test packets. When a test
case fails, hypothesis can simultaneously shrink the
design instance and the packet sequence. We ran

50 trials for each bug, and the results are shown
as box-and-whisker plots in Figure 2b–d. Overall,
PyH2G detects errors quickly with a small num-
ber of test cases and produces a simple failing test
case that has a short sequence of transactions and
a simple design. PyH2G also significantly reduces
the transaction complexity. PyH2G sometimes runs
slightly more test cases than CRT because hypothe-
sis will first generate explicit examples to stress-test
the boundary conditions before exploring values
randomly. However, this also help PyH2G discover
the credit bug more quickly than CRT.

PyH2P: PyH2 for processors
PyH2P is a PyH2 framework to automatically gen-

erate random assembly instruction sequences to
test processors, which makes the case for effective
domain-specific random testing methodologies. Differ-
ent from existing work, PyH2P is able to automatically
shrink a failed long program to a minimal instruction
sequence with a minimal set of architectural regis-
ters and memory addresses. It is possible to combine
auto-shrinking with other sophisticated random pro-
gram generators [11] by carefully using PyH2P random
strategies. PyH2P can also leverage Symbolic-QED [12]
by applying QED transformations to generated random
programs and performing bounded model checking to
accelerate bug discovery.

PyH2P creates composite hypothesis strategies
to generate random assembly programs for effec-
tive auto-shrinking. Specifically, PyH2P creates a
hierarchy of strategies for arithmetic, memory, and
branch instruction strategies using substrategies
for architectural registers, memory addresses, and
immediate values. PyH2P currently implements a
block-based mechanism which first instantiates a
control-flow template of branches, and then fills
random instructions between branches. PyH2P
ensures that each generated assembly program
has well-defined behavior across the test and ref-
erence models. For arithmetic instructions, PyH2P
constrains the range of the immediate value strat-
egy to avoid overflow. For memory instructions,
PyH2P constrains the range of the memory address
strategy to avoid unaligned and out-of-bound
memory accesses. For branch instructions, PyH2P
first generates a sequence of branch instruc-
tions and their corresponding labels, and then
randomly shuffles them to form the control-flow
template. This eliminates the possibility of branch

Figure 2. PyOCN RingNet generator case
study. (a) PyH2G example. (b) CRT. (c) IDT.
(d) PyH2G.

58 IEEE Design&Test

Open-Source EDA

out-of-range errors. Additionally, a set of registers
are dedicated to loop bounds and loop variables
to avoid infinite loops.

Case study: PicoRV32 processor
We demonstrate the effectiveness of PyH2P using

PicoRV32, an open-source, area-optimized RV32IMC
processor implemented in Verilog. We leverage
PyMTL3’s Verilator support to drive the cosimulation
using a PyMTL3 testbench. The imported processor
is connected to a PyMTL3 cycle-level test memory
which stores the assembly program generated by
PyH2P. After executing the program, we extract and
compare the value of PicoRV32 architectural regis-
ters and the test memory against an instruction set
simulator written in PyMTL3.

We inject five directed bugs into the Verilog code,
and ran 50 trials for each methodology and bug com-
bination. The results are shown as box-and-whisker
plots in Figure 3a–c. CRT generally requires a small
number of tests (less than to discover a bug, but the
failing cases usually include more than 50 complex
instructions. IDT significantly reduces the number of
instructions in the failing test case, but needs signif-
icantly more cases to find the failing case. Note that
IDT generates instructions of similar complexity to
CRT because we have to generate random imme-
diate values to avoid prohibitively long runtimes to
find these bugs. PyH2P is able to discover the failing
test case using a similar number of trials to CRT and
can shrink it to a minimal case with similar length
to the cases found by IDT. Moreover, PyH2P is able
to shrink the immediate value so that the average
instruction complexity is significantly reduced.

Figure 3d–g shows the failing cases for the mul_
carry bug discovered by each methodology. This
bug can only be triggered by specific operands. Fig-
ure 3d is the example found by CRT with 41 instruc-
tions, seven unique architectural registers, and large
immediate values. Figure 3e shows the example
found by IDT which uses only one register but a large
random immediate value. Figure 3f and g includes
two minimal failing cases from different PyH2P trials,
which are significantly simpler.

PyH2O: PyH2 for object-oriented
hardware

PyH2O is a PyH2 framework that enables using
method calls to test RTL hardware components
with object-oriented latency-insensitive interfaces.

The key contribution of PyH2O is a novel testing
methodology for concurrent hardware data struc-
tures that are difficult to thoroughly test using
traditional approaches. PyH2O proposes a novel
simulation mechanism called auto-ticking, which
has been implemented as a new PyMTL3 simulation
pass. With merely “transaction-accurate” Python
data structures as reference models, PyH2O uses the
rule-based stateful testing features in hypothesis to
perform a sequence of random method calls on both

Figure 3. PicoRV32 processor case
study. (a) CRT. (b) IDT. (c) PyH2P. (d)
CRT example. (e) IDT example. (f) PyH2P
example 1. (g) PyH2P example 2.

59March/April 2021

the reference model and the auto-ticking simulator
of the RTL model, and then checks if the outcomes
match for each method call.

PyH2O is based on method-based interfaces
which are decoupled handshake interfaces with
four ports: 1) enable; 2) ready; 3) arguments; and
4) return value. Essentially, setting the enable sig-
nal high after making sure the ready signal is high
is equivalent to calling the corresponding ready
method, checking if it returns true, and then call-
ing the actual method. Converting an RTL method
interface to a Python method involves an adapter
that provides a method and a ready method to the
user and sets/modifies the signals inside the adapter.
PyH2O leverages Python reflection to automatically
wrap the RTL method interfaces with a generated
top-level PyMTL3 wrapper with Python methods.

PyH2O applies the AutoTickSimPass to create an
auto-ticking simulator for the wrapped model. Con-
ceptually, auto-ticking is more fine-grained than the
classical delta cycle approach. Auto-ticking divides
the combinational logic into multiple parts based
on logic related to the method interfaces. When
the user calls the enhanced top-level method, not
only the method but also all the logic between this
method and the next method is executed. If the exe-
cuted method is the last method of the cycle, the
simulator advances to the first method of the next
cycle. If the user skips a method in this cycle and
calls another method later in the cycle or a previous
method that is already skipped/called in the current
cycle, the simulator ignores the in-between methods
and executes all the logic until it reaches the called
method. Unlike trivial one-method-per-cycle testing,
this auto-ticking scheme is able to execute multiple
methods in the same cycle if they are called in a
specific order.

Case study: reorder buffer data structure
Figure 4a shows an RTL reorder buffer imple-

mentation which exposes the three methods called
interfaces. allocate is ready if the buffer is not full.
It returns the entry index and advances the tail
pointer. update_ is ready if the buffer has valid ele-
ments. It takes an index/value pair to update the
buffer. remove is ready if the buffer head is valid
and already updated, and returns the index/value
pair. Note that remove and allocate can occur in
the same cycle even if the reorder buffer is full,
because the implementation combinationally

factors whether remove is called into allocate’s
ready signal. Figure 4b shows the execution
schedule generated by the AutoTickSimPass.
The auto-ticking simulator guarantees that a
sequence of three method calls in the order of
update_ < remove < allocate will occur in the
same cycle.

Figure 4. PyH2O reorder buffer case study.
(a) PyMTL3 reorder buffer code snippet.
(b) Auto-tick execution schedule for
reorder buffer. (c) First falsifying example
found by PyH2O. (d) Minimized failing case
after auto-shrinking.

60 IEEE Design&Test

Open-Source EDA

To show the effectiveness of PyH2O, we replace
head+1 with head+0 in line 19 of Figure 4a. This
subtle bug needs at least six transactions in a spe-
cific order to trigger because it requires six transac-
tions to allocate, update and remove two entries,
but must not remove the first one and allocate the
second one in the same cycle. After trying several
sequences with varying length from 5 to 19, PyH2O
discovers a 11-transaction failing case as shown in
Figure 4c. After auto-shrinking, PyH2O successfully
finds one of the minimum failing case as shown in
Figure 4d.

This ArTicle hAs introduced PyH2, which lev-
erages PyMTL3, pytest, and hypothesis to create a
novel open-source hardware testing methodology.
We believe PyH2 is an important first step toward
addressing four key challenges in open-source hard-
ware testing as follows.

• PyH2 is more accessible to open-source hard-
ware designers compared to complex closed-
source hardware testing methodologies.

• PyH2G is well-suited for testing not just design
instances but also design generators which are
critical to the success of the open-source hard-
ware ecosystem.

• PyH2P can improve the random testing of open-
source processor implementations compared to
the more limited directed and random testing
currently used in many open-source projects.

• PyH2O can more effectively test object-oriented
hardware data structures.

We have open-sourced PyMTL3 and PyH2 at
https://github.com/pymtl/pymtl3.

Acknowledgments
Shunning Jiang and Yanghui Ou contributed

equally to this work. This work was supported in part
by NSF CRI under Award 1512937, in part by DARPA
POSH under Award FA8650-18-2-7852, a research gift
from Xilinx, Inc., and the Center for Applications
Driving Architectures (ADA), one of six centers of
JUMP, a Semiconductor Research Corporation pro-
gram cosponsored by DARPA, as well as equipment,
tool, and/or physical IP donations from Intel, Xilinx,
Synopsys, Cadence, and ARM. We acknowledge
and thank Derek Lockhart for his initial thoughts
on combining PyMTL with hypothesis, and Cheng

Tan for his contributions to PyH2G. We would like

to acknowledge and thank David MacIver and Zac

Hatfield-Dodds for their work on the Hypothesis

framework and thoughtful discussions on how to lev-

erage Hypothesis for hardware. The U.S. Government

is authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copy-

right notation thereon. Any opinions, findings, and

conclusions or recommendations expressed in this

publication are those of the author(s) and do not

necessarily reflect the views of any funding agency.

 References
 [1] O. Shacham et al., “Avoiding game over: Bringing

design to the next level,” in Proc. 49th Annu. Design

Autom. Conf. (DAC), Jun. 2012, pp. 623–629.

 [2] M. Naylor and S. Moore, “A generic synthesisable test

bench,” in Proc. ACM/IEEE Int. Conf. Formal Methods

Models for Codesign (MEMOCODE), Sep. 2015,

pp. 128–137.

 [3] K. Laeufer et al., “RFUZZ: Coverage-directed fuzz

testing of RTL on FPGAs,” in Proc. Int. Conf. Comput.-

Aided Design, Nov. 2018, pp. 1–8.

 [4] S. Jiang, B. Ilbeyi, and C. Batten, “Mamba: Closing the

performance gap in productive hardware development

frameworks,” in Proc. 55th ACM/ESDA/IEEE Design

Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

 [5] S. Jiang et al., “PyMTL3: A Python framework

for open-source hardware modeling, generation,

simulation, and verification,” IEEE Micro, vol. 40, no. 4,

pp. 58–66, Jul. 2020.

 [6] T. Ajayi et al., “Toward an open-source digital flow: First

learnings from the OpenROAD project,” in Proc. 56th

Annu. Design Autom. Conf. (DAC), Jun. 2019, pp. 1–4.

 [7] K. Claessen and J. Hughes, “QuickCheck: A

lightweight tool for random testing of Haskell

programs,” in Proc. Int. Conf. Funct. Program. (ICFP),

Sep. 2000, pp. 268–279.

 [8] P. Bjesse et al., “Lava: Hardware design in Haskell,” in

Proc. Int. Conf. Funct. Program. (ICFP), Sep. 1998,

pp. 174–84.

 [9] D. MacIver et al., “Hypothesis: A new approach to

property-based testing,” J. Open Source Softw., vol. 4,

no. 43, p. 1891, Nov. 2019.

 [10] C. Tan et al., “PyOCN: A unified framework for

modeling, testing, and evaluating on-chip networks,” in

Proc. Int. Conf. Comput. Design (ICCD), Nov. 2019,

pp. 437–445.

61March/April 2021

 [11] F. Corno et al., “Fully automatic test program

generation for microprocessor cores,” in Proc. Design

Autom. Test Eur. (DATE), Mar. 2003, pp. 1006–1011.

 [12] F. Corno et al., “Fully automatic test program

generation for microprocessor cores,” in Proc. Design

Autom. Test Eur. (DATE), Mar. 2018, pp. 55–60.

Shunning Jiang is currently pursuing a PhD in
electrical and computer engineering with Cornell
University, Ithaca, NY. Jiang has a BS in computer
science from Zhiyuan College, Shanghai Jiao Tong
University, Shanghai, China (2015). He is a student
member of IEEE.

Yanghui Ou is currently pursuing a PhD in
electrical and computer engineering with Cornell
University, Ithaca, NY. Ou has a BEng in electrical
and computer engineering from the Hong Kong
University of Science and Technology, Hong Kong
(2018). He is a student member of IEEE.

Peitian Pan is currently pursuing a PhD in
electrical and computer engineering with Cornell
University, Ithaca, NY. Pan has a BS in computer
science from Shanghai Jiao Tong University,
Shanghai, China (2018). He is a student member of
IEEE.

Kaishuo Cheng is currently a junior under-
graduate student in computer science with Cornell
University, Ithaca, NY.

Yixiao Zhang has a BS and an MEng in electrical
and computer engineering from Cornell University,
Ithaca, NY (2018 and 2019, respectively).

Christopher Batten is currently an Associate
Professor of Electrical and Computer Engineering
with Cornell University, Ithaca, NY. Batten has a BS in
electrical engineering from the University of Virginia,
Charlottesville, VA (1999), an MPhil in engineering
from the University of Cambridge, Cambridge, U.K.
(2000), and a PhD in electrical engineering and
computer science from the Massachusetts Institute
of Technology, Cambridge, MA (2010). He is a
member of IEEE.

 Direct questions and comments about this article
to Christopher Batten, School of Electrical and
Computer Engineering, Cornell University, Ithaca, NY
14853 USA; cbatten@cornell.edu.

62 2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Open-Source EDA

Editor’s notes:
This article introduces a high-quality open-source static timing analysis
engine that is capable of parallel incremental timing and that provides an
efficient API to facilitate development of complex EDA tools.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 Static timing analySiS (STA) is a pivotal
step in the overall chip design flow. It verifies the
expected timing behaviors and prevents chips from
malfunctioning after tape-out [1]. Of all timing
analysis applications, incremental timing is imper-
ative for the success of timing-driven optimization
flows, such as placement, routing, logic synthesis,
and physical synthesis [2]. Optimization tools often
call a timer millions of times in their inner loop to
evaluate a transform or an algorithm. The timer
must quickly and accurately answer timing queries
to ensure slack integrity and timing closure after
the circuit experiences one or more changes. The
capability of a timer on both speed and accuracy
fronts is crucial for reasonable turnaround time and
performance.

To this end, we developed OpenTimer, a
high-performance timing analysis tool in 2015 [4].
OpenTimer is an award-winning tool in the ACM

OpenTimer v2: A Parallel
Incremental Timing
Analysis Engine
Tsung-Wei Huang
University of Utah

Chun-Xun Lin and Martin D. F. Wong
University of Illinois at Urbana–Champaign

Digital Object Identifier 10.1109/MDAT.2021.3049177
Date of publication: 5 January 2021; date of current version:
8 April 2021.

TAU Timing Analysis Contest (2014
through 2016) and has received many
recognitions in the CAD community
(golden timers in the IEEE/ACM ICCAD
CAD Contests and the ACM TAU Con-
tests [2]). OpenTimer is open-source,
and we are committed to free shar-
ing of our technical innovation to
make EDA a better and open place

to engage more talented people contributing to
the community [3]. So far, OpenTimer has been
used in many industrial and academic projects
such as Qflow, VSDflow, CloudV, DARPA IDEA,
OpenDesign, LGraph, and Ophidian [5]–[9].
After four years of development, we announced
a major release OpenTimer v2 [3]. We rewrote
the codebase in modern C++17 and developed
a new software architecture to facilitate the par-
allelization of incremental timing. The overview
of the OpenTimer v2 software stack is shown
in Figure 1. We summarize our contributions
as follows.

• New parallel task programming model: We
developed a new task-based programming
model that enables efficient implementations
of parallel decomposition strategies. The new
model allows us to go beyond the traditional
loop-based parallelization of incremental tim-
ing, thereby leading to more asynchrony and
faster runtime.

• New software architecture and API concept: We
developed the core timing routines around three

63March/April 2021

concepts, builder, action, and accessor. This sepa-
ration allows OpenTimer v2 to exploit parallelism
from both intra and inter operations, followed by
efficient lazy evaluation.

• New parallel incremental timing framework:
We developed a task-based incremental timing
framework that propagates timing naturally with
the structure of the timing graph. Our framework
can simultaneously perform both graph-based
analysis and path-based analysis in parallel while
keeping accurate results without breaking com-
plex dependencies between different timing
propagation tasks.

Compared with the previous generation, Open-
Timer v2 is faster and more scalable in increasing
the graph size and the CPU count. The program-
ming interface is also more succinct due to the
new API concept. We have made many com-
ponents modular to make OpenTimer v2 user-
friendly and easier for developers to contribute to
the codebase. These components include not only
the core parallel incremental timing algorithms
but also supporting readers/writers for SDC, lib-
erty, and SPEF that can be beneficial for other EDA
applications. We believe OpenTimer v2 stands out
as a unique system considering the technical inno-
vations and ensemble of software tradeoff and
architecture decisions we have made. Recently,
OpenTimer was selected as the Best Open-source
EDA Tool Award in the 2018 WOSET at ICCAD
(one out of 30) [10].

Challenges of incremental timing
Developing an efficient parallel incremental tim-

ing engine is a notoriously challenging job, requir-
ing in-depth knowledge of circuit, graph theory,
parallel programming, and software engineering.
We highlight the three aspects of the challenge we
face:

• Complex task dependencies: Updating a timing
graph takes on load capacitance, parasitics,
slew, delay, arrival time, required arrival time,
and more. These quantities are interdependent
and are not economical to compute. The result-
ing task dependency in terms of encapsulated
function calls is very large and complex.

• Irregular compute pattern: Updating a timing
graph involves highly diverse computation
patterns. We need to capture different forms of

timing data whether it is structured in a local
block or is flat in the global scope, to imple-
ment different delay calculators and pruning
heuristics.

• Unknown API practices: Our user experience led
us to believe that the API concept dominates the
usability of a timer. When things go incremental,
users and developers are often confused by the
effect of each operation, such as the per-call com-
plexity, parallelism, and consistency. This can sig-
nificantly lift up the turnaround time and result
in performance pitfall due to misunderstanding
of API.

The extensibility and scalability to new tech-
nology is also an important factor to take into
consideration while developing a general incre-
mental timing framework. We are not only inter-
ested in technical innovations but also in the
modularity of the software to provide a better
user experience.

Bottleneck in OpenTimer v1 and existing timers
One of the major differences between v1 and v2 is

the parallelization of incremental timing. OpenTimer
v1 and existing timers [11]–[13] dealt with incremen-
tal timing using loop-based parallelism [4]. In a rough
view, we levelized the circuit into a topological order
and applied the OpenMP “parallel for” directive
to each node set level by level. This level-based decom-
position is advantageous in its simple pipeline concept
and is by far the most implementation in existing timers,
including industrial tools. Figure 2 illustrates this strat-
egy as an example of forward timing propagation. For
each node, we update a number of dependent tasks
including parasitics (RCP), slew (SLP), delay (DLP),
arrival time (ATP), jump points (JMP), and pessimism
reduction (RCP) [4]. However, this paradigm suffers
from many performance drawbacks. For example, the

Figure 1. OpenTimer v2 software architecture [3].

64 IEEE Design&Test

Open-Source EDA

number of nodes can vary from level to level, resulting
in highly unbalanced thread utilization. Also, there is
a synchronization barrier between successive levels to
impose task dependencies. The overhead can be large
for graphs with long data paths. Furthermore, we found
it difficult to add to the pipeline other analysis frame-
works that require diverse modeling techniques, for
example, signal integrity and cross-talk analysis.

Big idea 1: A new parallel task
programming model using modern C++

After many years of research, we came to a conclu-
sion that the biggest hurdle to a scalable parallel timer
is a suitable parallel programming model. In addition to
the traditional loop-based approach, the programming
model must be capable of task-based parallelism. In
fact, we have tried multiple options, such as OpenMP

4.5 tasking and Intel Threading Building Blocks (TBB),
that are commonly used in EDA applications. We found
them unsuitable to our workload for various reasons.
For instance, OpenMP 4.5 tasking is static. Unfortunately,
it is difficult to decide the timing graph at the time of
programming. The problem of TBB is the programma-
bility. Users need to understand complex task constructs
and templates that are often at low level and hard to
maintain. Similar reasons exist in other libraries as well.
Therefore, we decided to develop a new parallel task
programming model using modern C++ technology.
Although the original purpose was for incremental tim-
ing, we later generalized it to a standalone open-source
project called Taskflow to benefit generic C++ develop-
ers [14]. Note that the proposed parallel task program-
ming model is different from that mentioned in [15],
which relies on a specialized scheduler to insert tasks
dynamically into shared work queues. We focus on
static modeling that maps the entire timing propagation
graph into a task computation graph. When the graph is
ready, the scheduler can perform whole-graph optimiza-
tion and schedule tasks using work-stealing to achieve
dynamic load balancing.

Big idea 2: A new API concept and
software architecture

With Taskflow in place, we develop a new soft-
ware architecture in OpenTimer v2 to enable effi-
cient parallel incremental timing. We group each
timing operation into one of the three categories,
builder, action, and accessor. A timing operation can
be either a C++ method in the timer class or com-
mand in our shell. Hereafter, the term OpenTimer
refers to v2 unless otherwise specified.

Builder: OpenTimer lineage
A builder operation builds up a timing analysis

environment, for example, reading cell libraries and
a verilog netlist. OpenTimer maintains a lineage
graph of builder operations to create a task execu-
tion plan (TEP). A TEP starts with no dependency
and keeps adding tasks to the lineage graph each
time users call a builder operation. It records what
transformations need to be executed when an action
operation is called.

Figure 3 shows an example of OpenTimer line-
age. The lineage is made of five builder operations,
read_celllib, read_verilog, read_sdc,
enable_cppr, and insert_net. Each time
users call a builder operation, the timer adds one or

Figure 2. Loop-based parallel timing propagations.
Each level applies a parallel_for to update timing
from the fanin of each node [4].

Figure 3. OpenTimer lineage example of five builder
operations (cyan). Three parsing tasks run in parallel.

65March/April 2021

multiple tasks to the lineage graph. These operations
are not evaluated until an action operation is issued.
The advantage of this is fine-grained task parallelism.
An operation is divided into several smaller tasks
that can run in parallel with other counterparts. For
example, reading an input file can be broken into
two subtasks, parsing the file and digesting the data
into OpenTimer’s in-memory model. It is obvious
the parsing part can run in parallel with others as
long as it precedes its corresponding digesting task.
Maintaining a lineage of builder operations enables
us to exploit both intra and interoperation parallel-
ism, followed by efficient lazy evaluation. Another
side benefit of the lineage is the engineering change
order (ECO) capability. We can easily keep track of
the modifiers for state recovery or debugging.

Action: Update timing
A TEP is materialized and evaluated when users

request the timer to perform an action operation,
for example, reporting the arrival time and the
slack value of a pin. Calling an action operation
triggers a timing update from the earliest task to
the one that produces the result of the action call.
Internally, we create a task dependency graph
and update timing in parallel, including forward
propagation (slew and arrival time) and back-
ward propagation (required arrival time). Figure 4
shows an example of task dependency graph to
update a timer. The bottom-most call of every
action operation is the method update_timing.
The method explores a minimum set of nodes in
the timing graph as propagation candidates and
constructs a task dependency graph to carry out
the timing update. Our tasking model can incor-
porate different types of timing propagation into a
task. Unlike the level-based approach in v1, a task
can start immediately after all its preceding tasks
finish. This largely enhances asynchrony, giving
rise to higher CPU utilization, and faster runtime.

Accessor: Inspect OpenTimer
An accessor operation lets users inspect the timer

status and dump static timing information, for exam-
ple, dumping the timing graph for visualization pur-
poses or dumping the design statistics. All accessor
operations are declared as constant methods in the
timer class. Calling an accessor method does not
alter any internal data structures of a timer.

Big idea 3: Parallel incremental timing
analysis algorithms

We discuss, in this section, how OpenTimer per-
forms graph-based analysis and path-based analysis.

Graph-based analysis
At the bottom of every action operation, Open-

Timer calls update_timing to perform graph-based
timing updates. The timer first evaluates the lineage
(e.g., Figure 3) and discovers a list of frontier pins
from which incremental timing should begin after
a modification is applied [4]. We then identify the

Figure 4. Example task dependency graph to carry
out an action operation. The graph consists of forward
propagation tasks (white) and backward propagation
tasks (black).

66 IEEE Design&Test

Open-Source EDA

propagation candidates (downstream and upstream
of frontier pins) and derive a task dependency graph
for graph-based timing update (e.g., Figure 4). Execut-
ing the task dependency graph autonomously triggers
a parallel incremental timing update.

Path-based analysis
We developed our path-based analysis using

the path generation algorithm by Huang and Wong
[16]. To our best knowledge, this is by far the fastest

algorithm in the literature. The algorithm consists
of two complementary data structures, suffix tree
and prefix tree. Each path is transformed into an
implicit representation that takes constant space
and time. The suffix tree represents the shortest
path tree rooted at a given endpoint of the design.
The prefix tree is a tree order of timing arcs each
representing a unique path deviated from a timing
arc. Generating the top-k critical paths across all
endpoints is extremely efficient under this data
structure. It also largely facilitates the paralleliza-
tion as each pair of suffix tree and prefix tree is
independent of each other at different endpoints.
An example of the implicit path representation is
shown in Figure 5.

Experimental results
OpenTimer v2 is implemented in C++17 on

a 40-core 3.2-GHz 64-bit Linux machine with
64–GB memory. We used G++ 8.0 with -std=c++17
to compile the source. Experiments are undertaken
on the TAU15 contest benchmarks with a golden
reference generated by IBM Einstimer under static
mode [2]. Table 1 compares the accuracy between
OpenTimer v1 and v2 on a set of TAU15 contest
benchmarks [2]. These benchmarks are where
OpenTimer v1 failed to achieve full accuracy due
to an implementation compromise between path
generation and parallelization. The new software
architecture in v2 lets us manage to resolve these
issues and we are able to match the golden results
completely. We did not observe too much runtime
and memory difference between v1 and v2 on these
benchmarks.

The TAU15 contest benchmarks have fewer than
ten incremental timing iterations, making it hard to
profile the performance. Therefore, we modified
two circuits tv80 and vga_lcd, on which both v1
and v2 acquire full accuracy, to incorporate 300
incremental timing iterations. In each iteration, we
randomly modify the designs (e.g., repower_
gate) and call report_timing to trigger incre-
mental timing updates. As shown in Figure 6, v2 is
consistently faster than v1 (2.14× on tv80 and 2.19×
on vga_lcd). About 64% of the speed-up came from
replacing the pipeline-based parallelism with the
new tasking framework. Figure 7 plots the runtime
scalability of v1 and v2 over an increasing number
of cores. Regardless of the core count, v2 is always
faster than v1. Both saturates at about 8–12 cores.

Table 1. Accuracy comparison between OpenTimer v1 and v2 on
TAU15 contest benchmarks [2].

Figure 5. OpenTimer applies implicit path
representation based on a suffix tree and a prefix
tree data structures per query to perform path-based
analysis [16].

Figure 6. Runtime comparison of incremental timing.

67March/April 2021

The scalability is affected by many factors such as
the graph structure and the size of incremental tim-
ing. A primary reason that prevents v2 from scaling
beyond 12 cores is the data size. Most data for incre-
mental timing are sparse. They do not span across
large cones, as full timing, which produces a large
amount of data for higher parallelism.

Figure 8 shows the runtime profiling for task-
based approach in OpenTimer v2 and loop-based
levelization in v1. We measure the time each sig-
nificant portion of update_timing takes in a
piechart. Creating a task graph occupies about 10%
of the entire runtime and executing the graph takes
the majority of 88%. On the other hand, the loop-
based approach spent up to 26% on updating the
level list and the parallel execution of tasks across
all levels takes 71%.

in thiS article, we presented OpenTimer v2—a
new parallel incremental timing analysis tool. We
have developed a new parallel task programming
model and applied it to design an efficient paral-
lel incremental timing framework. Also, we have
introduced a new API concept that defines a clear

operation effect on top of our paral-
lelization framework. The source of
OpenTimer v2 is available at [3].

Acknowledgments
We would like to thank all Open-

Timer users in providing their feed-
back, suggestions, and requests.

 References
[1] J. Bhasker and R. Chadha, Static Timing

Analysis for Nanometer Designs: A Practical

Approach, 2009th ed. New York, NY, USA:

Springer, 2009, ISBN-13: 978-0387938196.

[2] J. Hu, G. Schaeffer, and V. Garg,

“TAU 2015 contest on incremental timing

analysis,” in Proc. IEEE/ACM Int. Conf.

Comput.-Aided Design (ICCAD), Nov.

2015, pp. 895–902.

[3] OpenTimer. Accessed: 2020. [Online].

Available: https://github.com/OpenTimer/

OpenTimer

[4] T.-W. Huang and M. D. F. Wong,

“OpenTimer: A high-performance timing

analysis tool,” in Proc. IEEE/ACM Int. Conf.

Comput.-Aided Design (ICCAD), Nov.

2015, pp. 895–902.

 [5] Qflow. Accessed: 2020. [Online]. Available: http://

opencircuitdesign.com/qflow/

 [6] CloudV. Accessed: 2020. [Online]. Available: https://

cloudv.io/

 [7] J. Jung et al., “DATC RDF: An academic flow from

logic synthesis to detailed routing,” in Proc. Int. Conf.

Comput.-Aided Design, Nov. 2018, pp. 37:1–37:4.

 [8] LGraph. Accessed: 2020. [Online]. Available: https://

github.com/masc-ucsc/lgraph

 [9] Ophidian. Accessed: 2020. [Online]. Available: https://

gitlab.com/eclufsc/ophidian

 [10] WOSET. Accessed: 2020. [Online]. Available: https://

github.com/woset-workshop/woset-workshop.github.io

 [11] OpenSTA. Accessed: 2020. [Online]. Available: https://

github.com/abk-openroad/OpenSTA

 [12] P.-Y. Lee, I. H.-R. Jiang, and T.-C. Chen, “FastPass: Fast

timing path search for generalized timing exception

handling,” in Proc. 23rd Asia South Pacific Design

Autom. Conf. (ASP-DAC), Jan. 2018, pp. 172–177.

 [13] K. E. Murray and V. Betz, “Tatum: Parallel timing

analysis for faster design cycles and improved

optimization,” in Proc. Int. Conf. Field-Programmable

Technol. (FPT), Dec. 2018, pp. 110–117.

Figure 7. Runtime scalability with increasing number
of CPU cores on two large circuits, netcard, and
leon3mp.

Figure 8. Runtime profiling for task parallelism in
OpenTimer v2 and loop parallelism in v1.

68 IEEE Design&Test

Open-Source EDA

 [14] T.-W. Huang et al., “Cpp-taskflow: Fast task-based

parallel programming using modern C++,” in Proc.

IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),

May 2019, pp. 974–983.

 [15] A. Mark Lavin et al., “Decentralized dynamically

scheduled parallel static timing analysis,” U.S. Patent

2 012 0311 514 A1, Jul. 8, 2014.

 [16] T.-W. Huang and M. D. F. Wong, “UI-timer 1.0:

An ultrafast path-based timing analysis algorithm for

CPPR,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 35, no. 11, pp. 1862–1875, Nov. 2016.

Tsung-Wei Huang is currently an Assistant
Professor with the Electrical and Computer
Engineering (ECE) Department, University of Utah,
Salt Lake City, UT. His current research interests focus
on timing analysis and parallel processing. Huang has
a BS and an MS from the Department of Computer
Science, National Cheng Kung University (NCKU),
Tainan, Taiwan (2010 and 2011, respectively), and a
PhD in ECE from the University of Illinois at Urbana–
Champaign (UIUC), Champaign, IL.

Chun-Xun Lin is currently pursuing a PhD
with the Department of Electrical and Computer

Engineering (ECE), University of Illinois at Urbana–
Champaign (UIUC), Champaign, IL. His research
interests include VLSI CAD and parallel processing.
Lin has a BS in electrical engineering from National
Cheng Kung University, Tainan, Taiwan (2009) and
an MS in electronics engineering from the Graduate
Institute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan (2011).

Martin D. F. Wong is currently the Dean of
the Faculty of Engineering, Chinese University of
Hong Kong (CUHK), Hong Kong. Wong has a BS in
mathematics from the University of Toronto, Toronto,
ON, Canada, and an MS in mathematics and a PhD in
computer science (1987) from the University of Illinois
at Urbana–Champaign (UIUC), Champaign, IL.

 Direct questions and comments about this article
to Tsung-Wei Huang, Department of Electrical and
Computer Engineering, University of Utah, Salt Lake
City, UT 84112 USA; tsung-wei.huang@utah.edu.

692168-2356/21©2021 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2021

Editor’s notes:
This article introduces an architecture exploration tool to study and
understand the tradeoffs of future processor systems using nonvolatile
memory and help guide the design of the future.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 EnErgy EfficiEncy sErvEs as a critical factor
in designing embedded systems. Furthermore, the
growing dominance of energy harvesting systems
(EHSs) in sensor-rich applications has eventuated an
emerging trend in wearable-systems and IoT devices
as an alternative to battery-powered embedded sys-
tems. Most of these applications are designed for
resource-constraint environments, and EHSs utilize
ambient-energy sources such as solar, piezoelectric,
RF, etc. [1]–[3].

State-of-the-art EHSs exploit nonvolatile memories
(NVMs), such as ferroelectric random access mem-
ory (FRAM) instead of FLASH memory, to improve

CATNAP-Sim:
A Comprehensive
Exploration and a
Nonvolatile Processor
Simulator for Energy
Harvesting Systems
Ali Hoseinghorban, Mohammad Abbasinia,
Ali Paridari, and Alireza Ejlali
Sharif University of Technology

Digital Object Identifier 10.1109/MDAT.2021.3049176
Date of publication: 5 January 2021; date of current version:
8 April 2021.

energy efficiency and
performance [4], [5].
NVMs have interesting
features such as byte
accessibility, low access
latency, and low energy
consumption compared
to FLASH memories,
which improves cost,

weight, and energy efficiency of state-of-the-art
EHSs [6]. On the other hand, SRAM has lower
access latency and energy consumption compared
to NVMs, while it dissipates higher leakage power.
Furthermore, SRAM cannot hold data in the case of
power failure in EHSs [5]. To this end, the state-of-
the-art EHSs exploit hybrid NVM-SRAM memory to
take advantage of both memories. For instance, the
MSP430FR family, commercially off-the-shelf micro-
controllers by Texas Instruments, use hybrid FRAM-
SRAM memory.

In EHSs, the processor runs an application, until
the stored energy in the capacitor is higher than
the cutoff threshold. When the capacitor’s energy
depletes, the system turns off the processor and turns
it on again when the capacitor accumulates enough

70 IEEE Design&Test

Open-Source EDA

energy. When the system turns off the processor,
NVM keeps the data, while SRAM loses them; so, the
processor must consider an appropriate check-point-
ing policy to avoid data inconsistency issues [1],
[7]. Data inconsistency occurs when the processor
fails to complete the program while some data are
changed in the NVM. So, merely re-executing from
the last check-point with modified data would result
in wrong functionality.

In addition to check-pointing policy, several fac-
tors influence the performance and energy efficiency
of a given EHS, such as ambient source power trace,
capacitor size, and application memory access
patterns. The use of real hardware platforms, i.e.,
MSP430FR microcontrollers for experiments, gives
more reliable and accurate results that rule out all
simulation errors. However, examining a diverse
range of experimental conditions on hardware is dif-
ficult and time-consuming. Furthermore, the extrac-
tion of useful information such as the number of
memory accesses, the number of check-points, and
charging time of the system is either impossible or
imposes a significant overhead.

In this article, we presented CATNAP-Sim,1 a sim-
ulator for EHSs, with NVP and hybrid NVM-SRAM
memory. We have integrated the energy and perfor-
mance characteristics of MSP430FR5969 and Wang’s
power system model [6] into SimpleScalar [8]. We
also implemented several check-pointing policies
in CATNAP-Sim [1], [2], [7]. Furthermore, we com-
prehensively explore the design space and discuss
the effects of exploiting SRAM, solar power strength,
capacitor size, benchmark, and check-pointing pol-
icy on the EHSs.

The novel contributions of this work are listed as
follows.

• Energy consumption of MSP430FR5969, a com-
mercial off-the-shelf platform, is measured using
Energy-Trace++, and the results are integrated
into CATNAP-Sim.

• The low overhead, capacitor-less, converter-less,
and state-of-the-art power system model [6] is
integrated into CATNAP-Sim.

• CATNAP-Sim provides an exhaustive design
exploration for various parameters, such as
capacitor size, ambient power trace, check-point-
ing policy, and applications. We provide a set of

1We released CATNAP-Sim as an open-source simulator, and it could be down-
loaded from http://esrlab.ce.sharif.ir/download/CATNAP-Sim.gz.tar.

scripts to run simulations in parallel to improve
the simulation time.

• We show how CATNAP-Sim marks important
tradeoffs between charging time, execution time,
failure rate, check-pointing overhead, and energy
consumption for different check-pointing policies.

Background and related works
NVPs exploit hybrid SRAM-NVM memory

because the use of SRAM in the memory hierarchy
improves the efficiency of the system significantly;
however, SRAM loses its data in the case of a power
failure. So, the system must consider an appropriate
check-pointing policy to reduce the check-pointing
overheads while eliminating the data inconsistency
in the system. The inconsistency problem occurs
when the processor modifies some data on the
NVM, and cannot back up the system successfully.
Therefore, re-execution from the last successful
check-point might produce incorrect results. The
check-pointing policy in the literature can be classi-
fied into four groups.

In the software check-pointing policy, the pro-
grammer divides the application into a set of tasks
(functions), and the system backs up after the suc-
cessful execution of each task [2]. In this policy, the
programmer identifies each task’s sensitive data dur-
ing the development phase; in the online phase, the
system copies the sensitive data to a temporary mem-
ory before the execution of each task. Therefore, the
system can resolve the inconsistency problem with
low energy and area overhead. However, setting the
size of tasks requires precise knowledge about the
system’s energy consumption and capacitor, which
might not be available in the development phase.

In the compiler check-pointing policy [1], the
compiler analyzes the control flow graph of an
application and inserts check-pointing instructions
in different application lines. The compiler detects
write-after-read (WAR) pairs targeting the same
address and adds a check-point instruction between
them to deal with the inconsistency problem. This
approach guarantees the program’s consistency
without user interaction, while it imposes too many
check-points to the application [7].

In the low-voltage-threshold check-pointing pol-
icy [5], the processor executes the program until it
receives the capacitor’s low-voltage interrupt from
the capacitor’s voltage controller; then, the system

71March/April 2021

starts to back up the SRAM. In this approach, the sys-
tem performs backups only when necessary; so, the
number of check-points is ideal. However, because
of some nonideal factors like imperfect knowledge
of the state-of-charge, unknown backup size, and
input power fluctuations, setting a precise thresh-
old to guarantee successful backup is a challenge.
Finally, in the watchdog check-pointing policy [7],
the system statically or dynamically sets a watchdog
timer threshold, and when the timer overflows, the
system creates a backup of the SRAM. The inconsist-
ency problem in low-voltage-threshold and watchdog
check-pointing policies is hard to resolve because
the check-point locations are unknown in the devel-
opment phase. In the case of failure, the processor
needs to re-execute the application from scratch
[5] or monitor the data modification in NVM [7],
which increases the area and energy overheads of
the system.

Bazzaz et al. [9] proposed an energy estimation
model and a simulator to estimate battery-pow-
ered embedded systems’ energy consumption.
However, this simulator is not suitable for EHSs
because there are many indispensable parameters,
such as solar power fluctuation, capacitor size, and
check-pointing policy, which are not considered
in MEET and other simulators for battery-powered
devices. Recent studies presented several models
for EHSs and IoT devices [3], [6]. However, they did
not provide a simulator to examine the behavior of
state-of-the-art EHSs.

Several in-house simulators used in previous
research studies are customized SimpleScalar [7] or
gem5 [1] specifically for the focus of their particular
research purposes; therefore, they cannot be used in
general, all-inclusive approaches. Additionally, most
of them modified the default architecture of the
processor or memory subsystem; so, they could not
evaluate their simulator’s accuracy with real hard-
ware. NVPSim [10] is a gem5-based simulator that
analyzes the effects of cache memory for nonvola-
tile processors in EHSs. NVPSim considered an ideal
capacitor as the energy buffer of the system, which
can store any amount of energy while real capaci-
tors saturate after accumulating a specific amount of
energy [6]. NVPSim employs low-voltage-threshold
as the system’s check-pointing policy, but it does
not investigate the inconsistency challenge. But
CATNAP-Sim considers the effects of inconsistency
on different check-pointing policies and supports all

four check-pointing policies. So, the user can apply
a hybrid policy by configuring the simulator.

CATNAP-Sim structure
EHSs have four main components, including the

source of ambient power, processing unit, power
system, and energy storage (Figure 1a). The power
system scavenges the ambient solar power and
accumulates it in the bulk capacitor. The control-
ler monitors the voltage of the bulk capacitor and
closes the switch when the voltage rises above the
trigger voltage or opens it when the capacitor volt-
age falls below the cutoff voltage. The controller
raises an interrupt to the processor when the capaci-
tor’s voltage falls below the low threshold.

As we mentioned previously, data inconsist-
ency is an important challenge in EHSs with NVM

Figure 1. Overview of typical EHS components and
the structure of CATNAP-Sim. (a) Components of an
EHS, (b) structure of CATNAP-Sim, (c) solar power
traces during eight days [11], and (d) P–V curve [6]
of the power system.

72 IEEE Design&Test

Open-Source EDA

[1], [2], [7]. To address and solve data inconsist-
ency challenges, a simulator is required to monitor
changes in the memories. Furthermore, to consider
the effect of high access latency of NVMs, a simulator
is needed to evaluate the performance and energy
efficiency of different strategies such as scratchpad
memory (SPM) allocation, cache memory architec-
tures, and eviction policies in EHSs [2], [5]. In the
SimpleScalar timing model, all instructions except
for loads and stores are executed in one cycle. The
latency of load and store instructions depends on
which memory type (SRAM or NVM) the requested
data are accessed [8]. In this article, in line with
previous simulators, such as MEET [9] and NVPSim
[10], we modified an existing ARM simulator called
SimpleScalar. So, we kept the SimpleScalar simula-
tor modeling intact, but provided additional func-
tions for modeling the input power, check-pointing
policies, and NVM. We used Sim-profile mode of
the SimpleScalar version 3.0. This version supports
ARM7 integer instruction set and FPA floating-point
extensions.

The structure of CATNAP-Sim is depicted in
Figure 1b, and the modified and additional compo-
nents to the SimpleScalar simulator are outlined with
patterns. Harvesting and embedded systems exploit
ultralow-power microcontrollers such as ARM Cor-
tex-M, ARM7, or TI MSP430 with scratchpad memories
to reduce energy consumption. Therefore, in line with
recent studies targeting embedded and EHSs [7], [9],
CATNAP-Sim is based on SimpleScalar, which models
ARM7 cores (three-stage pipeline RISC cores without
cache memory). CATNAP-Sim is able to work with
thumb or regular instruction sets. We also have a plan

to extend CATNAP-Sim to support simulation of EHSs
with ARM Cortex-A processors with zero, one, or two
cache levels using gem5 simulator.

Source of ambient power
Several surrounding ambient energy sources can

be utilized to provide electrical energy through var-
ious designated harvesting technologies like solar
and RF [3]. Among the ambient power sources,
harvesting solar energy through photovoltaic (PV)
cell technology is desirable due to the high availa-
bility and remarkable energy density [6], [11]. Light
energy patterns can be predictable or stochastic,
responding to numerous environmental circum-
stances such as time, location, and mobility of the
device. Figure 1c depicts the input irradiance for
eight days [11], and it shows that the radiant power
is significantly low throughout most of the day.
Therefore, energy consumption in EHSs is a critical
challenge that directly affects the forward progress
of the system.

Processing unit
The advantages of NVPs with NVM-SRAM mem-

ory, e.g., fast backup, fast restore, and low leakage
energy make them suitable for EHSs with unreli-
able energy sources. However, the state-of-the-art
NVPs exploit nonvolatile registers, which consist of
a nonvolatile storage cell attached to a CMOS flip-
flop [4]. During the ordinary execution of the pro-
gram, the processor works with the CMOS flip-flops;
during backup, data in flip-flops are stored in non-
volatile cells; during boot-up, flip-flops restore their
data from the nonvolatile cells. Although emerging
NVMs considerably reduce the energy consumption
of backups and restores compared to FLASH mem-
ories [4], backup and restore operations in NVPs
are still expensive because processors need to back
up all the registers of the system [2], [7]. In addi-
tion to registers, the main memory in an NVP con-
sists of hybrid SRAM-NVM memory to improve the
efficiency and performance of both execution and
backups because access latency and energy con-
sumption of NVMs (especially write accesses) are
higher than SRAM.

To validate the energy consumption and execu-
tion time of the CATNAP-Sim, we executed 15 appli-
cations on MSP430FR5969 and CATNAP-Sim, and
the results are presented in Table 1. Although ARM7
and MSP430 have different instruction-sets, both are

Table 1. Comparison between the energy and execution time of
15 applications on msp43fr5969 and CATNAP-Sim.

73March/April 2021

RISC-based microcontrollers optimized for low-power
applications. Therefore, most of the common instruc-
tions in both microcontrollers have similar behavior.
Table 1 shows that for small applications, such as
crc32, adpcm, and ludcmp10, the energy consump-
tion error is more than 9.6%, whereas, for large appli-
cations, such as insertsort, stringsearch, and qsort, the
error is less than 4.2%. So, compared to a real platform,
the energy consumption and execution time error of
CATNAP-Sim is less than 13.30% and 8.21%, respec-
tively. NVPSim did not provide any report regarding
the energy consumption error, but the execution time
error in this simulator is less than 9.31%.

Power system
The power system accumulates the ambient

energy in the system’s energy storage and turns
on/off the processor. PV cells are among the most pop-
ular and convenient technologies to scavenge ambi-
ent solar power and convert it into electrical energy.
CATNAP-Sim exploits Wang’s power system model
[6] for absorbing solar energy and storing it in the
system’s energy storage. In this model, dc–dc convert-
ers, which are necessary for conventional EHSs, are
replaced with a simple controller to improve energy
efficiency. Furthermore, the use of a bulk capaci-
tor as the system’s energy storage provides higher
energy efficiency, less complexity, and improves the
area, cost, and weight of the system compared to
super-capacitors and rechargeable batteries.

Wang’s model is evaluated with a real hardware
prototype. The evaluation shows that the leakage
and other nonideal factors have a more significant
effect on lower irradiances. So, the input power
model’s error decreases from 8.2% to 2.7% when irra-
diance increases from 100 to 440 W/m2.

NVPSim considers an ideal capacitor as the energy
buffer of the system, which can store any amount of
energy while real capacitors saturate after accumu-
lating a specific amount of energy. Wang’s power
model (Figure 1d) shows that the incoming current
from the PV cells drops when the capacitor’s voltage
goes above the saturation voltage. So, the absorbed
power depends on the accumulated energy (voltage)
of the capacitor. Therefore in NVPSim, the model for
absorbing and accumulating energy is not realistic.
NVPSim did not report any error, but in CATNAP-Sim,
we used Wang’s model [6] with less than 8.2% error.

There is a switch for turning the processor on/off
by connecting and disconnecting the processor from

the capacitor. If the capacitor’s voltage drops below
the cutoff voltage, the controller opens the switch
to recharge the capacitor. When the stored energy
exceeds a predefined trigger threshold, the controller
closes the switch to turn on the processor. The system
exploits a small decoupling capacitor (in the scale
of a few nano-farads) to tolerate noise and create
backups from processor registers in the case of power
failures. Figure 1a outlines the components of an EHS
proposed by Wang et al. [6]. Figure 1d shows the
power–voltage curve of the absorbed power, which
peaks when the capacitor’s voltage is in the range
2.5–3 V. In CATNAP-Sim, the user can set the cutoff
and trigger voltage to scavenge the maximum power
from the ambient source.

Energy storage
The energy storage is responsible for accumu-

lating absorbed energy and providing energy for
the NVP. The size of the capacitor is an important
parameter in EHSs because using small capacitors
would increase the number of power interrupts,
and using large capacitors results in longer charging
time and response time in the system [7], [10]. In
CATNAP-Sim, the user can configure the size of the
capacitor to provide a fair tradeoff between charging
time and the number of power interrupts. The avail-
able energy in the capacitor in cycle i is calculated
as follows:

, , , ,cap i cap i in i nvp i dpteng eng eng eng eng−= + − −1 (1)

Table 2. Setup configurations used CATNAP-Sim.

74 IEEE Design&Test

Open-Source EDA

where engcap,i, engin,i, engnvp,i, and engdpt, represent
the accumulated energy in the capacitor, absorbed
energy, energy consumed by NVP, and the dis-
sipated energy of all of the modules in the system
except the processor, respectively.

Considering the frequency of NVP (freq), the
capacitance of the bulk capacitor (C), and the
power–voltage curve (Figure 1d) of the power sys-
tem (curveP–V), the absorbed power in cycle i could
be estimated using the irradiance strength in cycle i
(irri), and the voltage of the capacitor in cycle i − 1
(voli−1) as follows:

(), ,in i P V i ieng curve irr vol
freq− −= ×1

1

,cap i
i

eng
vol

C
−

−
×

= 1
1

2
.

The energy consumption of NVP consists of leak-
age power (pownvp,lkg) and dynamic power, and
both NVM and SRAM have a notable impact on the
dynamic energy consumption of NVPs. Therefore,
the energy consumption of NVP in cycle i is calcu-
lated as follows:

, , ,nvp i nvp lkg ins ieng pow eng
freq

 = × +

1

(){ , ,
{ , }

mem i rd mem
mem sram nvm

rd eng
∈

+ ×∑
()}, ,mem i wr memwr eng+ × .

The engins,i, engrd,mem, and engwr,mem show the
energy consumption of executing an instruction
on the NVP, reading from memory mem, and writ-
ing to memory mem, respectively. The mem is
either NVM or SRAM, and the wrmem,i (rdmem,i) is
one if the NVP executes store (load) instruction
from mem at cycle i; otherwise, it remains zero.
It is important to mention that the NVP only con-
sumes energy when the switch is closed, and the
processor is on.

(2)

(3)

Experiments
We explore the design space of EHSs using

CATNAP-Sim.

System setup
CATNAP-Sim takes the configuration of processor

and memory as input. We measured average energy
consumption and latency of backup, restore, non-
memory instructions, access to FRAM, and access
to SRAM from MSP430FR5969 microcontroller using
EnergyTrace++. CATNAP-Sim simulates a three-stage
pipeline processor, and it can work with both thumb
and regular instruction sets. However, in the evalua-
tions, we used 16-bit thumb instruction set because
MSP430 is a three-stage pipeline 16-bit processor. Fur-
thermore, we used energy and latency parameters of an
NVP with the ARM Cortex-M0 proposed by Bartling et
al. [12], and we perform experiments with both micro-
controllers (Table 2). We add various input solar traces
from Gorlatova et al. [11] to study the effects of input
power’s strength and stability on EHSs (Figure 2a). All
experiments are done with these 30 s traces, and users
can import custom solar traces to the CATNAP-Sim.
The users can implement their approaches with vari-
ous processors and platforms by changing these values
in the simulator’s configuration file.

CATNAP-Sim is based on SimpleScalar, and
NVPSim is based on gem5 simulator. The reports
show that both SimpleScalar and gem5 are capa-
ble of executing more than several hundred million
instructions per hour. Table 3 shows the simulation
time for simulating with CATNAP-Sim and NVPSim
on a server with ten 3 GHz Intel Xeon E5-2690 cores.
The results show that for a single execution, NVPSim
is faster than CATNAP-sim by up to eight times. How-
ever, we provide a set of scripts in CATNAP-Sim to
run simulations in parallel and improve the simula-
tion time. So, for the execution of ten different sce-
narios, CATNAPSim improves the simulation time by
up to 7.4 times over NVPSim.

Results
In the following, we discuss the effects of various

parameters on the performance and energy effi-
ciency of EHSs.

Input power trace: Input power changes both in
amount and pattern over time. For example, solar
energy usually has its peak, moderate, and minimum
power at noon, morning (or afternoon), and after

Table 3. Comparison between simulation time of
CATNAP-Sim and NVPSim.

75March/April 2021

sundown (or at night), respectively. Another factor
to consider would be the mobility of the device,
whether the device is in motion or in a stable posi-
tion, which can profoundly affect the predictability
of the input power.

Benchmarks: Energy consumption of accesses
to memory (especially NVMs) has a significant
contribution to the total energy consumption of

the system. The number and pattern of accesses to
memory are different between benchmarks. There-
fore, to yield more accurate simulation results, we
added 15 applications from MiBench and Mälard-
alen to CATNAP-Sim. Figure 2c shows that for corner,
the number of failed executed instructions becomes
almost zero when the system exploits 150 µF capac-
itor, while for edge, this happens when the system

Figure 2. Comprehensive design exploration using CATNAP-Sim. (a) Three weak, strong,
and unstable solar traces used in simulations. (b) Effect of SRAM and check-pointing
interval (epic application, 500 µF capacitor, unstable trace, watchdog check-pointing
policy, and MSP430 microcontroller). (c) Effects of input power trace, capacitor size,
and benchmarks on EHSs (watchdog check-pointing policy with 50,000 instructions
thresholds and MSP430 microcontroller). (d) Effects of check-pointing policy and
benchmarks on EHSs (unstable trace, 500 µF capacitor, and Cortex-M0 microcontroller).
(e) Forward progress trace of EHS for the first 500 ms of execution (edge application,
500 µF capacitor, unstable trace, and MSP430 microcontroller). (f) Voltage trace of EHS
for the first 500 ms of execution (edge application, 500 µF capacitor, unstable trace,
and MSP430 microcontroller).

76 IEEE Design&Test

Open-Source EDA

uses a 500 µF capacitor. The contribution of failed
executed instructions in smooth application on
response time is less than 2% for the system with a
500 µF capacitor.

Capacitor size: The system can accumulate more
energy with a larger capacitor, which reduces the
number of power interrupts in the system, but the
system requires more time to charge a larger capac-
itor [7], [10]. Thus, the large capacitor results in
longer response time in the system, especially when
the input power is weak. The results in Figure 2c
show that the system with 50 µF is unable to com-
plete smooth in 30 s when it works under all solar
traces depicted in Figure 2a. The system with 150
µF also fails to complete smooth under weak solar
irradiance. For corner, the system with 50 and 150 µF
capacitors improves the average response time of
the system with 500 µF capacitor by 61% and 58%,
respectively.

Check-pointing policy: We compared three
check-pointing policies using CATNAP-Sim for
15 applications, and the results are presented in
Figure 2d. Furthermore, Figure 2e and f displays
the first 500 ms of the execution of one sample only
to clearly show the detailed forward progress and
voltage trace, respectively (for the sake of visibil-
ity, we cannot show the detailed forward progress
and capacitor voltage trace for 30 s). In compiler
check-pointing policy [1], many unnecessary back-
ups are imposed on the system, which increases the
system’s energy and performance overhead. There-
fore, the forward progress is slow, and the capaci-
tor energy is depleted faster than other approaches.
The watchdog [7] and low-voltage-threshold [5] pol-
icies make backup decisions during the execution
time; hence, these policies need hardware modifi-
cations or operating system supports to guarantee
the consistency of the application; otherwise, they
need to re-execute the application from scratch.
To this end, we implemented two policies: 1) soft-
ware plus watchdog (sw+wdt) and 2) software plus
low-voltage-threshold (sw+lvt). So, in the case of
failure, the processor resumes application from the
last software check-point to keep consistency with-
out hardware modifications. Figure 2d shows that
sw+wdt and sw+lvt have faster forward progress
than compiler check-pointing policy. Furthermore,
the system failed to complete seven applications
with compiler policy. However, in sw+wdt and

sw+lvt, the system only failed to complete one
application.

The important challenge in check-pointing is to
achieve an optimal point in a tradeoff between the
total number of check-points and the total number
of failed instructions caused by power failures. To
this end, we used the watchdog policy with different
thresholds, and the results are presented in Figure 2b.
The results for hybrid NVM-SRAM show that when
the watchdog threshold is set to 500, 5000, 50,000,
500,000, and 5,000,000 instructions, the contribution
of backup and restore (failed executed instructions)
to total response time is 29.63% (0.02%), 11.71%
(0.10%), 1.36% (0.61%), 0.18% (9.85%), and 0.03%
(35.49%), respectively. It is noteworthy to mention
that charge time. Results depict that the charging
time of the system is 532, 134, and 422 ms, when the
watchdog threshold is set to 500, 50,000, and 500,000
instructions, respectively.

Memory type: The use of SRAM improves the
energy efficiency and performance of embedded sys-
tems [1], [2], [5]. However, EHSs should backup the
SRAM data to NVM when the backup signal is raised.
Therefore, when the backup signals the backup,
restore, and failed executed instructions increase the
energy inefficiency in the system and result in longer
a system with unified NVM (e.g., QuickRecall [4])
and a system with hybrid NVM-SRAM memory with
various backup intervals. The results show that when
the system sets the threshold too low (500) or too high
(5,000,000), the hybrid NVM-SRAM increases the sys-
tem’s response time by 74% and 46%, respectively.
The best result of the hybrid NVM-SRAM approach is
achieved when the watchdog timer threshold is set to
50,000 instructions, which improve the best result of
the unified NVM approach (5000 instructions watch-
dog threshold) by 10%.

in this articlE, we proposed CATNAP-Sim, a
nonvolatile processor for EHSs. We discussed the
important components of state-of-the-art EHSs and
the model of components which are utilized in
CATNAP-Sim. CATNAP-Sim provides an opportunity
for users to explore the design space exhaustively,
find appropriate values for various parameters, and
improve the performance and energy efficiency of
EHSs. We also investigated the effects of various
parameters, such as input power strength, bench-
marks, capacitor size, check-pointing policy, and
impact of SRAM in EHSs.

77March/April 2021

 References
 [1] M. Xie et al., “Avoiding data inconsistency in energy

harvesting powered embedded systems,” ACM Trans.

Design Autom. Electron. Syst., vol. 23, no. 3, p. 38, 2018.

 [2] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent

execution without checkpoints,” Proc. ACM Program.

Lang., vol. 1, no. OOPSLA, p. 96, 2017.

 [3] B. Martinez et al., “The power of models: Modeling

power consumption for IoT devices,” IEEE Sensors J.,

vol. 15, no. 10, pp. 5777–5789, Oct. 2015.

 [4] H. Jayakumar et al., “QuickRecall: A HW/SW approach

for computing across power cycles in transiently

powered computers,” ACM J. Emerg. Technol. Comput.

Syst., vol. 12, no. 1, p. 8, 2015.

 [5] H. Li et al., “An energy efficient backup scheme with

low inrush current for nonvolatile SRAM in energy

harvesting sensor nodes,” in Proc. Design, Autom. Test

Eur. Conf. Exhibit. (DATE). San Jose, CA, USA: EDA

Consortium, 2015, pp. 7–12.

 [6] Y. Wang et al., “Storage-less and converter-less

photovoltaic energy harvesting with maximum power

point tracking for Internet of Things,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 35,

no.2, pp. 173–186, Feb. 2016.

 [7] A. Hoseinghorban, M. Abbasinia, and A. Ejlali,

“PROWL: A cache replacement policy for consistency

aware renewable powered devices,” IEEE Trans. Emerg.

Topics Comput., early access, Oct. 14, 2020, doi:

10.1109/TETC.2020.3031114.

 [8] T. Austin, E. Larson, and D. Ernst, “SimpleScalar:

An infrastructure for computer system modeling,”

Computer, vol. 35, no. 2, pp. 59–67, 2002.

 [9] M. Bazzaz, M. Salehi, and A. Ejlali, “An accurate

instruction-level energy estimation model and tool

for embedded systems,” IEEE Trans. Instrum. Meas.,

vol. 62, no. 7, pp. 1927–1934, Jul. 2013.

 [10] Y. Gu et al., “NVPsim: A simulator for architecture

explorations of nonvolatile processors,” in Proc. 21st

Asia South Pacific Design Autom. Conf. (ASP-DAC),

Jan. 2016, pp. 147–152.

 [11] M. Gorlatova, A. Wallwater, and G. Zussman,

“Networking low-power energy harvesting devices:

Measurements and algorithms,” IEEE Trans. Mobile

Comput., vol. 12, no. 9, pp. 1853–1865, Sep. 2013.

 [12] S. C. Bartling et al., “An 8 MHz 75 µA/MHz zero-

leakage non-volatile logic-based Cortex-M0 MCU SoC

exhibiting 100% digital state retention at VDD=0V with

<400ns wakeup and sleep transitions,” in IEEE Int.

Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,

Feb. 2013, pp. 432–433.

Ali Hoseinghorban is currently pursuing a PhD
with the Computer Engineering Department, Sharif
University of Technology, Tehran, Iran. He is also
a Visiting Researcher with the Chair for Processor
Design, CFAED, Technische Universität Dresden,
Dresden, Germany. His research interests include
energy harvesting systems and emerging nonvolatile
memories.

Mohammad Abbasinia has a BSc in computer
engineering from Shahid Beheshti University, Tehran,
Iran (2015) and an MSc in computer engineering from
the Sharif University of Technology, Tehran (2020).
His research interests include energy harvesting
systems and emerging nonvolatile memories.

Ali Paridari is currently pursuing an MSc with
the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran. His research
interests include energy harvesting systems and
emerging nonvolatile memories. Paridari has a BSc
from the Department of Computer Engineering,
Shahid Beheshti University, Tehran, Iran (2018).

Alireza Ejlali is an Associate Professor of
Computer Engineering with Sharif University of
Technology, Tehran, Iran. His research interests
include low power design and fault-tolerant
embedded systems.

 Direct questions and comments about this article to
Alireza Ejlali, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran; ejlali@
sharif.edu.

mailto:ejlali@sharif.edu
mailto:ejlali@sharif.edu

78 2168-2356/20©2020 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

General Interest

Editor’s notes:
This article presents a type of negative group delay (NGD) circuit based on
transmission line resonators. In order to obtain the circuit’s S-parameters,
the article uses a combination of ABCD and Z-parameters. Analytical design
equations are presented, which are verified using circuit simulations.

—Binoy Ravindran, Virginia Tech

 Since itS firSt experimentation in the micro-
wave frequencies [1], [2], the negative group delay
(NGD) circuits have attracted much attention of
electronic, RF, and microwave research engineers.
Because of its counterintuitive effect, the NGD
function remains unfamiliar and causes skepticism
among RF and microwave engineering communities.

Further understanding about the NGD phenome-
non intuitively occurred during the microwave met-
amaterial revolutions in the 2000s [3]–[5]. The NGD
effect was found with double negative index peri-
odical structures constituted by several periodical
left-handed (LH) cells. However, the matematerial
structure-inspired NGD passive circuits suffer from high
attenuation losses which may reach 20 dB [3]–[5] even
with a single cell. Various designs, such as microstrip
line-based [6] and dual band NGD circuit [7],

Design of | Shape
Stub-Based Negative
Group Delay Circuit
Fayu Wan, Ningdong Li, and Blaise Ravelo
Nanjing University of Information Science and
Technology (NUIST)

Wenceslas Rahajandraibe
Aix-Marseille University, CNRS,
University of Toulon

Digital Object Identifier 10.1109/MDAT.2020.3002149
Date of publication: 12 June 2020; date of current version:
8 April 2021.

were performed for illustrating of this

unfamiliar microwave circuit.

To solve the circuit application

problems caused by the high insertion

loss, some interesting NGD passive net-

works, for example, a general-purpose

gain amplifier, were employed to com-

pensate high signal attenuation (see

[8]–[11]). Active transversal filter-based NGD topol-

ogies using non-Foster elements were initiated [9],

[10]. Encouraging results guaranteeing stability in

the NGD bandwidth were obtained. A simpler low-

noise amplifier (LNA) cascaded with RL and RC-

network passive circuit is introduced in [11] and

[12]. Nevertheless, the embedded amplifiers can

increase the out-of-band noise and design com-

plexity. Also, the NGD active circuits require

further research work to reduce the design com-

plexity considerably and to maintain the opera-

tion stability in the NGD bandwidth. Moreover,

the active NGD circuits were still needed for fur-

ther investigation notably about the nonlinearity

and the definition of active NGD circuit Figure-

of-Merit (FoM). In addition to design complexity,

the applications of NGD-active microwave circuits

are not yet potentially guaranteed in this decade.

Therefore, the design of a low-loss microwave

NGD-passive circuits is still a challenging and

attractive task.

Sébastien Lalléchère
Université Clermont Auvergne (UCA), CNRS

79March/April 2021

To avoid the design complexity, more efforts have
been put since the early 2010s on the design of low
attenuation NGD-passive circuits [13]–[22]. Among
the technical solutions for the passive NGD circuit
design, innovative topologies of distributed elements
such as microstrip coupling lines (CLs) and transmis-
sion lines (TLs) were developed in [13]–[18]. Two
compact and self-matched NGD microstrip circuits
[18] constituted by CL loaded lossy TLs and resistor
were designed to obtain the reflection coefficient
greater than 30 dB. Some NGD topologies employ
complicated microwave functions as power dividers
or power combiners to improve the circuits’ band-
width. However, the NGD applications remain practi-
cally limited by the design complexity.

In parallel to the research on low attenuation
NGD-passive circuits, diverse NGD functions were
developed [13]–[20]. NGD circuit inspired from
absorptive band-stop filter topology was introduced
in [16]. Further works on the design of compact NGD
circuits were also made [18]–[21]. A multiband NGD
circuit operating simply with tri-parallel uncoupled
lines was designed in [20]. To meet the maturity of
applications [22], [23], the NGD microwave circuit
researchers must overcome the limitations [24] nota-
bly in terms of attenuation and still need to explore
the different topologies of NGD microwave circuits.

For this reason, an unfamiliar microwave-passive
topology of reverse T-shape stub is initiated in this
article. It will be investigating whether the topology
may be able to generate NGD function guaranteeing
low signal attenuation. The NGD network is com-
posed of fully distributed elements as two identical
CLs and identical TLs.

This article is organized in three main sections as
follows.

• To gain a good familiarity about the NGD
analysis, theoretical investigation based on the
S-parameter modeling is developed in the “NGD
theory of the under design intercoupled branch
reverse T-stub topology” section. The bandpass
NGD analysis will be performed by identifying
the NGD center frequency. The NGD existence
condition will be established from the analytical
group delay expression derived from transmis-
sion coefficient.

• In the “Design, simulation, and experimental
validations” section, the calculated results, sim-
ulations, and experimental validations will be

discussed. To verify the feasibility of the NGD
theory, a proof-of-concept of reverse T-stub
microstrip circuit design will be described.

• Finally, in the last section, a conclusion is pro-
vided.

NGD theory of the under design
intercoupled branch reverse
T-stub topology

In this section, the modeling of the unfamiliar NGD
topology constituted originally by reverse T-shape stub
with branch line intercoupled will be introduced. Com-
pared to the existing work, in particular, the NGD CL
topology investigated in [19], a new distributed reverse
T-shape stub topology is investigated in this article.
Accordingly, completely new analytical expressions
governing the NGD analysis are established.

Analytical modeling methodology of reverse
T-topology

After topological description, the global circuit input
impedance will be analytically investigated based on
the approach reported in [25] and [26]. The equivalent
S-parameter analytical model is established. Then, the
analytical group delay expression is extracted from the
reverse T-stub topology transmission coefficient. Then,
the NGD analysis will be established.

Topological description
Figure 1 sketches the electrical circuit configura-

tion of the “ | ” or reverse T-stub-based NGD topol-
ogy under study. It acts as a two-port circuit built
with fully distributed passive structure. It is built with
three identical TLs. The secondary branches of “T”
are constituted by two CLs and TLs. The constituting
elementary CLs and TLs are assumed having the same
characteristic impedance Zc and electrical length θ.

Figure 1. Reverse T-stub-based topology
under study.

80 IEEE Design&Test

General Interest

Acting as a microwave topology, our analysis and
design must be based on the S -parameters. As shown
in Figure 2, the overall topology can be reduced to
a parallel impedance Zin. To determine the global
S-parameter, we can proceed with the equivalent
impedance matrix of Zin.

Methodological description
Acting as a passive circuit, the NGD design method

including the theoretical analysis can be summarized
by the flow chart depicted in Figure 3. The key point of
the NGD analysis of our reverse T-topology is the calcu-
lation of the S-parameters. The schematic of the topol-
ogy shown in Figure 1 with equivalent matrix blocks is
shown in Figure 4. According to the microwave circuit
theory, the S-parameter can be obtained from the two-
port circuit impedance matrix via the Z-to-S transform.

Elementary parameter definition
The constituting elementary lines are assumed

with physical with physical length d, which corre-
sponds to the delay τ and the electrical length θ. We
denote the propagation wave speed by v, and the
relationship between d and τ = d/v. We recall that

the electrical length is given by θ (ω) = ωτ the basic
elementary CLs and TLs. For the sake of analytical
simplification of the S-parameter and group delay
expressions, the reverse T-stub constituting CLs and
TLs are considered lossless.

Analytical approach and modeling of reverse
T-topology input impedance

The calculation of Zin will be realized from the
operation between the ABCD- and Z-matrices of
the constituting elements of the reverse T-stub cir-
cuit. By means of ABCD matric, the NGD topol-
ogy global input impedance can be explicated as

and the term x = √

 (1 + C) / (1 − C) where C is the
voltage coupling coefficient of the coupler.

S-parameter modeling
The following paragraphs will explore the NGD

analysis of our T-stub-based topology. Acting as a
microstrip circuit, the analysis is established with
S-parameter modeling.

Figure 2. Equivalent reduced circuit of the
topology shown in Figure 1.

Figure 3. Flow chart of NGD modeling
applied to the reverse T-topology.

 Z in (jω)

 j Z c

⎧

⎪

 ⎨
⎪

⎩

 (x − 1) 2 co s 2 [θ (ω)] −

 (x +  1)2 sin 4 [θ (ω)] − 16 x 2 cos 4 [θ (ω)]
+ 10x (x 2 + 1) sin 2 [θ (ω)] cos 2 [θ (ω)]

⎫

⎪

 ⎬
⎪

⎭

 (x + 1) 2 cot [θ (ω)] {
 (x + 1) 2 cos 4 [θ (ω)] +

 2 (x 2 + 1) [1 −  3 cos2 [θ (ω)]

 }
(1)

 =

81March/April 2021

Extraction method of global S-parameter
First, according to the circuit and system theory,

we remember that the impedance matrix of the
reduced circuit of Figure 2 is given by

 [Z ⊥  (jω)] = [
 Z in (jω) Z in (jω)

 Z in (jω) Z in (jω)

] . (2)

Knowing Zin, the associated S-matrix can be obtained
via the Z-to-S transform matrix relationship

 [S
⊥
 (jω)] = ([Z ⊥ (jω)] − R 0 [1] 2)

× ([Z ⊥ (jω)] + R 0 [1] 2) −1 (3)

with R0 = 50 Ω is the terminal load reference imped-
ance and the two-dimension identity matrix

 [1] 2 = [1 0
0

1
] . (4)

Frequency-dependent expressions of reflection
and transmission coefficients

Substituting input impedance Zin introduced in
(12) into the determined S-matrix, the reflection and
transmission coefficients as a function of Zc, θ (ω),
and x were, respectively, written as

 j (x + 1) 2 R 0 cos [θ (ω)]

 {
2 (x 2 + 1) sin 4 [θ (ω)] − x sin[2θ (ω)]

− 2 (x 2 − 1) cos 2 [θ (ω)]

 }

 (5)

 {
2 (x 2 + 1)

2
 sin 4 [θ (ω)] − 2 (x 2 − 1)

2
 cos 2 [θ (ω)]

− 5x (x 2 + 1) sin 2 [2θ (ω)] + 32 x 2 cos 2 [0 (ω)]

 }

 j Z c sin[θ(ω )]

with

 ξ(jω) =

⎧

⎪
 ⎨

⎪

⎩

 R 0 cos [θ (ω)]

⎡
 ⎢

⎣

 χ 2 sin 4 [θ (ω)]

 + χ 4 cos 2 [θ (ω)] sin 2 [θ (ω)]
+ χ 7 cos 2 [θ (ω)]

⎤
 ⎥

⎦

+ j Z c sin [θ (ω)]

⎡

 ⎢

⎣

 χ 1 sin 4 [θ (ω)] +

 χ 3 cos 2 [θ (ω)] sin 2 [θ (ω)]

+ χ 5 cos 4 [θ (ω)]

 + χ 6 cos 2 [θ (ω)]

⎤

 ⎥

⎦

⎫

⎪
 ⎬

⎪

⎭

and

Magnitudes of reflection and
transmission coefficients

Similar to the classical microwave circuit analy-
ses, before the NGD analysis, it is crucial to perceive
the frequency responses of the transmission coeffi-
cient. Accordingly, the associated magnitude of the
reflection and transmission coefficients is, respec-
tively, given by

 s
21

 (ω) = s
21

 (jω) = 

 2ζ (ω)

 |
 Z c s in [θ (ω)]

⎧

⎪

 ⎨
⎪

⎩

2 (x 2 + 1) 2 sin 4 [θ (ω)] −

2 (x 2 − 1) 2 cos 2 [θ (ω)] −

 5x (x 2 + 1) sin 2 [2θ (ω)]

  + 32 x 2 cos 2 [θ (ω)]

⎫

⎪

 ⎬
⎪

⎭

 |

 s
11

 (ω) = s
21

 (jω) = 

 2ζ (ω)

  |
 (x + 1)    2   R  0 cos [θ (ω)]

⎧

⎪

 ⎨
⎪

⎩

2 (x 2 + 1) sin 4 [θ (ω)]

 − x sin [2θ (ω)]
− 2 (x 2 − 1) cos 2 [θ (ω)]

⎫

⎪

 ⎬
⎪

⎭

 |

 S 21 (jω) =
 2ξ (jω) (6)

 S 11 (jω) =
 2ξ (jω)

with

√

 R 0 2 cos 2 [θ (ω)]

⎧

⎪

 ⎨
⎪

⎩

 χ 2 sin 4 [θ (ω)]

 +χ 4 cos 2 [θ (ω)] sin 2 [θ (ω)]
+ χ 7 cos 2 [θ (ω)]

⎫

⎪

 ⎬
⎪

⎭

2

+ Z c 2 sin 2 [θ (ω)]

⎧

⎪

 ⎨
⎪

⎩

 χ 1 sin 4 [θ (ω)] +

 χ 3 cos 2 [θ (ω)] sin 2 [θ (ω)]

+ χ 5 cos 4 [θ (ω)]

+ χ 6 cos 2 [θ (ω)]

⎫

⎪

 ⎬
⎪

⎭

2

 .

(10)

(11)

 ζ(ω) =

 j (x + 1) 2 R 0 cos [θ (ω)]

(7)

⎧

⎪
 ⎨

⎪

⎩

 χ 1 = (x + 1) 2

 χ 2 = − (x 4 + 2 x 3 + 2 x 2 + 2x + 1)

 χ 3 = − 10x (x 2 + 1)

 χ 4 = 2x (x + 1) 2
 χ 5 = 16 x 2

 χ 6 = − (x 2 + 1) 2

 χ 7 = (x 2 + 1) 2 .

 (8)

(9)

82 IEEE Design&Test

General Interest

NGD analysis at very low frequency
One of natural particular frequency, which can

be investigated for the NGD existence, is the lowest
one or DC. The NGD analysis can be performed from
the group delay expressed in (24). At very low fre-
quency, the reverse T-topology presents the follow-
ing group delay:

 τ (ω ≈ 0) =
π Z c [4 x 2 − (x 2 − 1)

2
]

2 R 0 ω 0 (x 2 − 1)
2

 .

We can emphasize that this expression is always
positive for any parameters x and Zc. Therefore, the
topology under study cannot behave as a low-pass
NGD circuit.

NGD analysis at resonance frequency
The second particular frequency of the topology

under study can be the resonance ω =  ω 0 = π/(2τ).
At this frequency, the group delay is shown as

 τ (ω 0) = − π R 0 (x + 1) 2 ___________
 2 Z c ω 0 (x 2 + 1)

 .

This group delay is unconditionally negative for any
value of the topology parameters. Therefore, the
circuit can behave as bandpass NGD function. The
NGD center frequency is equal to ω = ω 0 .

Design and test methodology of NGD circuit
The methodology to design and to test the NGD

circuit must begin with the expected fabrication
technology and the desired value of NGD at the
center frequency. Then, we can follow the design
guideline indicated by the flow chart of Figure 5
until the NGD circuit prototype fabrication and test.

The NGD design method can be divided into three
successive phases.

• Phase 1: At the beginning of the design, the NGD
function around the expected working frequency
must be specified. Then, the analytical compu-
tation can be realized based on the ideal model
of the S-parameters. Some parametric analyses
can also be performed in this phase to check the
better comprehension of influence of parameters
constituting the NGD topology.

• Phase 2: In this intermediate step, the NGD engi-
neer must take care on the available technology
for fabricating the NGD prototype. For example, in
the present study as it will be explored in the next
validation section, we will deal with microstrip
technology to design and implemented our NGD

Description of NGD analysis and
NGD circuit design

It is worth emphasizing that still many efforts
are needed to make the NGD engineering familiar
to electronic and RF/microwave device designers.
Similar to classical electronic circuits (filters, phase
shifters, couplers, power dividers, etc.), the NGD
engineering can be openly performed in a familiar
manner. The two following paragraphs describe the
way to analysis and the methodological design of
the NGD circuit under investigation.

Frequency-dependent group delay
The phase shift associated to the transmission

coefficient is defined by ϕ (ω) = ∠ S 21 (jω) . We have

According to the circuit and system theory, the
group delay can be derived from the transmission
coefficient by the relation

 τ (ω) = −∂ ϕ (ω)
 _ ∂ ω .

Knowing the transmission phase introduced
in (12), the reverse T-stub topology group delay
can be calculated analytically from this previous
expression.

Figure 4. Schematic of the topology shown in Figure 1
with equivalent matrix blocks.

(13)

(15)

(14)

(12)

= π _
2
 − arctan

⎧

⎪

⎨
 ⎪

⎩

 Z c sin [θ(ω)]

⎡

 ⎢

⎣

 χ 1 sin 4 [θ(ω)] +

 χ 3 cos 2 [θ(ω)] sin 2 [θ(ω)]

+ χ 5 cos 4 [θ(ω)]

+ χ 6 cos 2 [θ(ω)]

⎤

 ⎥

⎦

 R 0 cos [θ(ω)]
[

 χ 2 sin 4 [θ(ω)]

 + χ 4 cos 2 [θ(ω)] sin 2 [θ(ω)]
+ χ 7 cos 2 [θ(ω)]

]

⎫

⎪

⎬
 ⎪

⎭

 ϕ (ω)

83March/April 2021

prototype. Therefore, in this step, the NGD circuit
can be designed with the design and simulation
tools (as in the present study, we will utilize with
the RF and microwave circuit ADS designer and
simulator from Keysight Technologies). The sim-
ulations are focused on the realistic effects on the
NGD prototype. It consists of simulating and opti-
mizing the NGD circuit by taking into account the
realistic effects as the TL widths and lengths. In
this step, we can also add the extra interconnect
lines as the input/output access lines, the “T” or
“+” interconnects and also the substrate material
parameters provided by the manufacturer.

• Phase 3: In this last phase, the NGD prototype
must be fabricated from the circuit layout drawn
from the optimized design performed in Phase 2.
Acting as an RF and microwave circuit, the NGD
pr ototype can be tested with a vector network
analyzer (VNA). Before the tests, the VNA must
be calibrated with consideration of the working
frequency. The test must start with the S-parame-
ter measurements. Then, the group delay can be
calculated from (12).

To verify more realistically the efficiency of the
developed NGD theory, the proof-of-concept will be
investigated in the next section.

Design, simulation, and experimental
validations

As proof-of-concept, NGD circuit was designed,
simulated, fabricated, and tested to verify the rele-
vance of the theory established in the previous sec-
tion. The design process is implemented in a manner
similar to that of the classical and familiar electronic
analog circuits. All the simulation results presented
in this article were obtained from simulations with
the microwave electronic circuit designer and simu-
lator ADS from Keysight Technologies. The measure-
ments are performed with a VNA.

Parametric analysis
The proposed parametric analyses aim to predict

the influences of the reverse T-stub parameters Z0,
C, and θ on the NGD topology under study. To do
this, three cases of S-parameter parametric simula-
tions from 1.5 to 2.5 GHz were performed by varying
characteristic impedance Z0, coupling coefficient C
and the physical lengths d. The group delay, trans-
mission, and reflection coefficient results are keenly

mapped in cartography in function of both the CL
and TL characteristics and the operation frequency.

Figure 5. Methodological flow chart of NGD circuit
design and test.

Figure 6. Parametric simulated results
versus Z0 : (a) group delay, (b) S21, and (c) S11
with fixed τ = 0.129 ns.

84 IEEE Design&Test

General Interest

It is noteworthy that the ideal circuit investigated
in this section presents the same specifications as the
FR4 substrate used to design and fabricate the proof of
concept tested in the following section. Acting as an
ideal configuration, the calculated results explored in
the present subsection may differ from the electromag-
netic computations and measurements because of the
TL characteristic impedance, effective permittivity
and also the metallization skin effect. Those effects are
not taken into account in our NGD theory.

Parametric analysis with respect to Z0

The present parametric analysis is dedicated to
the influence of Z0 on the NGD aspect. As can be
seen in Figure 6a–c, by varying Z0 from 81 to 54 Ω,
the optimal GD decreases from −0.57 to −1.32 ns at
the NGD center frequency. Then, S21 and S11 vary
from −1.41 to −2.44 dB and from −18.75 to −12.96 dB,
respectively.

Parametric analysis with respect to C
The present paragraph analyses the influence

of coupling coefficient C varied from varies from
−14 to −20 dB on the NGD performance by fixing
Z0 = 64 Ω and τ = 0.129 ns. It can be underlined that
the GD and S21 are improved with the increase with Z0.
However, S11 is worst with the increase of characteris-
tic impedance. The S-parameter and GD versus C are
simulated from 1.5 to 2.5 GHz. It is found in Figure 7 that
the NGD center frequency which is of about 1.886 GHz
is insensitive to C. However, the GD and S21 decrease
proportionally with C. Then, reflection coefficient
S11 (in the vicinity of center frequency) becomes better
when C decreases.

Parametric analysis with respect to τ
The NGD circuit performance depends on time

delay τ. Therefore, parametric analysis has been
indirectly carried out with respect to τ via microstrip
lengths d summarized in Table 1. As seen in Figure 8a,
when τ changes from 0.123 to 0.150 ns, the GD var-
ies from −0.90 to −1.07 ns. The NGD center frequency

shifts significantly from approximately 1.98 and 1.65
GHz. Furthermore, as depicted in Figure 8b and c, S21
and S11 do not change significantly in the range of var-
ied τ. Therefore, to start the design, we can choose from
the present parametric analysis, the T-stub appropriated
physical length according to the designed NGD center
frequency.

Figure 7. Parametric analyses of (a) GD,
(b) S21, and (c) S11 in function of C with fixed
Z0 ≈ 61.09 Ω and τ = 0.129 ns.

Table 1. Time delay and the associated microstrip line
physical length.

Figure 8. Parametric analyses of (a) GD,
(b) S21, and (c) S11 in function of τ.

85March/April 2021

Experimental results
To validate experimentally the NGD func-

tion with the under-investigation reverse T-stub
topology, the microstrip prototype design will be
described in the next paragraph. Then, compari-
sons of results from simulations and measurements
will be discussed.

Design description of tested reverse
T-stub-based NGD prototype

To verify the rationality of the previously developed
theory and parametric analyses, a proof-of-concept of
NGD circuit was designed, fabricated, and measured.
The prototype is a passive distributed circuit. This pro-
totype is implemented in fully distributed microstrip

technology without using lossy lumped circuits. The
NGD circuit prototype was realized on the FR4 sub-
strate presenting characteristics addressed in Table 2.
Before the fabrication, the T-stub TLs and CLs were
slightly optimized to reach more significant NGD val-
ues over low-attenuation losses. It should be empha-
sized that the TL connecting the access ports could

Figure 9. Fabricated NGD circuit prototype
(a) layout and (b) photograph.

Figure 10. Photograph of the reverse
T-stub NGD prototype experimental setup.

Figure 11. (a) Group delay, (b) transmission,
and (c) reflection coefficients of the
fabricated NGD circuit shown in Figure 10b.

Table 2. NGD circuit prototype parameters.

86 IEEE Design&Test

General Interest

be neglected because of the well-matching effect and
its time-delay notable small compared to the targeted
NGD value. The final parameters are indicated in
Table 2.

The TL and CL physical width w corresponds to
characteristic impedance Z0 = 61.09 Ω. The TL and CL
quarter wavelength (θ = 90°) is set at the NGD center
frequencies of about 1.89 GHz. The considered CLs have
the same coupling coefficients C of about −17.83 dB.

The ADS design layout of the fabricated prototype
is displayed in Figure 9a. The associated photograph
is presented in Figure 9b which has a physical size
42 mm × 87 mm.

Discussion on simulated and measured results
The NGD prototype was measured using a VNA

provided by Rohde and Schwarz (ZNB 20, frequency
band 100 kHz–20 GHz). The S-parameter measure-
ment experimental setup is shown in Figure 10.

 The comparative results between the calculations
from (9), (10), and (13), simulations and measure-
ments are performed from 1.8 to 2 GHz as depicted
in Figure 11:

• simulations with ADS tool represented by the
“Sim.” legend plotted in black solid line;

• experimental tests and measurements repre-
sented by the “Meas.” legend plotted in red
dashed line;

• ideal calculated results represented by the
“Model” legend plotted in blue dotted line.

The modeled results are slightly shifted because of
the substrate imperfection in the considered working
frequency. As plotted in Figure 11a, the NGD optimal
value is of about −0.8 ns in simulation against −1 ns
in measurement. The NGD center frequency is of
about 1.89 GHz. The slight differences between the
GD calculated from (12), simulations and experi-
mental results, notably observed around the NGD

center frequency is notably due to the substrate dis-
persion loss and also the metallization skin effect.
As expected, this result proves the validity of the
bandpass NGD function generated by the reverse
T-stub topology introduced earlier in Figure 1. The
NGD prototype has a bandwidth of about 20 MHz.
Moreover, Figure 11b introduces that the designed
NGD prototype ensures a very low attenuation loss
only of about −1.7 dB in simulation and measurement
around the center frequency. Additionally, as depicted
in Figure 11c, the reflection coefficient is better than
−15 dB within the NGD bandwidth.

Performance comparison
The comparison between the basic performances

of the proposed NGD turtle topology and the existing
ones available in the literature [13], [14], [18]–[20],
[27] are summarized in Table 3. The comparison
includes the NGD FoM defined in [19]. It is notewor-
thy that the introduced NGD topology presents the
following advantages: 1) significant design flexibility;
2) implemented with fully distributed elements with-
out lossy lumped component; 3) low signal attenua-
tion less than 1.7 dB; and 4) the reflection loss better
than −15 dB without additional and external match-
ing networks in the NGD bandwidth.

An nGD theory of reverse T-stub shape inducing
interbranch coupling effect is developed. The pro-
posed NGD topology is composed of fully passive
distributed elements with three identical TLs and two
identical CLs. The S-parameter model of the topology
is established from ABCD- and Z-matrices. The NGD
analysis that allows identifying the NGD existence
condition is described.

The relevance of the NGD theory was approved
by simulations and measurements. Parametric analy-
ses were conducted in function of the reverse T-stub
physical and electrical characteristics. The NGD

Table 3. Performance comparison (Y: yes, N: no).

87March/April 2021

IEEE Trans. Antennas Propag., vol. 51, no. 10,

pp. 2619–2625, Oct. 2003.

 [5] O. F. Siddiqui et al., “Time-domain measurement of

negative-index transmission-line metamaterials,” IEEE

Trans. Microw. Theory Techn., vol. 52, no. 5,

pp. 1449–1453, May 2004.

 [6] G. Chaudhary, Y. Jeong, and J. Lim, “Microstrip line

negative group delay filters for microwave circuits,”

IEEE Trans. Microw. Theory Techn., vol. 62, no. 2,

pp. 234–243, Feb. 2014.

 [7] H. Choi et al., “A novel design for a dual-band negative

group delay circuit,” IEEE Microw. Wireless Compon.

Lett., vol. 21, no. 1, pp. 19–21, Jan. 2011.

 [8] C.-T.-M. Wu et al., “A dual-purpose reconfigurable

negative group delay circuit based on distributed

amplifiers,” IEEE Microw. Wireless Compon. Lett.,

vol. 23, no. 11, pp. 593–595, Nov. 2013.

 [9] T. Zhang, R. Xu, and C.-T.-M. Wu, “Unconditionally stable

non-foster element using active transversal-filter-based

negative group delay circuit,” IEEE Microw. Wireless

Compon. Lett., vol. 27, no. 10, pp. 921–923, Oct. 2017.

 [10] M. Zhu and C.-T. Michael Wu, “A tunable non-foster

T-network loaded transmission line using distributed

amplifier-based reconfigurable negative group delay

circuit,” in Proc. Asia–Pacific Microw. Conf. (APMC),

Kyoto, Japan, Nov. 2018, pp. 720–722.

 [11] F. Wan et al., “The design method of the active

negative group delay circuits based on a microwave

amplifier and an RL-series network,” IEEE Access,

vol. 6, pp. 33849–33858, Jun. 2018.

 [12] F. Wan et al., “Time-domain experimentation of NGD

ActiveRC-network cell,” IEEE Trans. Circuits Syst. II,

Exp. Briefs, vol. 66, no. 4, pp. 562–566, Apr. 2019.

 [13] G. Chaudhary and Y. Jeong, “Low signal-attenuation

negative group-delay network topologies using

coupled lines,” IEEE Trans. Microw. Theory Techn., vol.

62, no. 10, pp. 2316–2324, Oct. 2014.

 [14] G. Chaudhary and Y. Jeong, “Transmission-type

negative group delay networks using coupled line

doublet structure,” IET Microw., Antennas Propag.,

vol. 9, no. 8, pp. 748–754, Feb. 2015.

 [15] B. Ravelo, “Theory of coupled line coupler-based

negative group delay microwave circuit,” IEEE Trans.

Microw. Theory Techn., vol. 64, no. 11,

pp. 3604–3611, Nov. 2016.

 [16] L.-F. Qiu et al., “Absorptive bandstop filter with

prescribed negative group delay and bandwidth,” IEEE

Microw. Wireless Compon. Lett., vol. 27, no. 7,

pp. 639–641, Jul. 2017.

performance of the topology in function of elemen-
tary CLs and TLs characteristic impedance and cou-
pling coefficients and the operation frequency was
cartographied.

More importantly, comparisons between the cal-
culated, simulated, and measured results are also dis-
cussed. As proof-of-concept, the test and validations
were performed with an NGD circuit prototype designed
and implemented in microstrip technology. An excel-
lent agreement between simulations and measure-
ments was observed. The reverse T-stub NGD prototype
achieved an excellent performance compared with
the literature [13], [14], [18]–[20]. Measured group
delay value of −1 ns and transmission coefficient better
than −2 dB were occurred at the center frequency of
about 1.886 GHz.

The modeling methodology offers valuable
information to the electronic designer, for instance
exploring the sensitivity of the T-stub NGD system to
input variability.

Acknowledgments
This work was supported in part by NSFC under

Grant 61971230 and Grant 61601233, in part by the
Jiangsu Distinguished Professor program and Six
Major Talents Summit of Jiangsu Province (2019-
DZXX-022), in part by the Postgraduate Research and
Practice Innovation Program of Jiangsu Province
under Grant SJKY19_0974, and in part by the Priority
Academic Program Development of Jiangsu Higher
Education Institutions (PAPD) fund.

 References
 [1] S. Lucyszyn and I. D. Robertson, “Analog reflection

topology building blocks for adaptive microwave signal

processing applications,” IEEE Trans. Microw. Theory

Techn., vol. 43, no. 3, pp. 601–611, Mar. 1995.

 [2] C. D. Broomfield and J. K. A. Everard, “Broadband

negative group delay networks for compensation

of oscillators, filters and communication systems,”

Electron. Lett., vol. 36, no. 23, pp. 1931–1933,

Nov. 2000.

 [3] G. V. Eleftheriades, O. Siddiqui, and A. K. Iyer,

“Transmission line models for negative refractive index

media and associated implementations without excess

resonators,” IEEE Microw. Wireless Compon. Lett., vol.

13, no. 2, pp. 51–53, Feb. 2003.

 [4] O. F. Siddiqui, M. Mojahedi, and G. V. Eleftheriades,

“Periodically loaded transmission line with effective

negative refractive index and negative group velocity,”

88 IEEE Design&Test

General Interest

 [17] G. Liu and J. Xu, “Compact transmission-type negative

group delay circuit with low attenuation,” Electron. Lett.,

vol. 53, no. 7, pp. 476–478, Mar. 2017.

 [18] T. Shao et al., “A compact transmission-line self-

matched negative group delay microwave circuit,” IEEE

Access, vol. 5, pp. 22836–22843, Oct. 2017.

 [19] Z. Wang et al., “A negative group delay microwave

circuit based on signal interference techniques,” IEEE

Microw. Wireless Compon. Lett., vol. 28, no. 4,

pp. 290–292, Apr. 2018.

 [20] F. Wan et al., “S-parameter model of three parallel

interconnect lines generating negative group-delay

effect,” IEEE Access, vol. 6, pp. 57152–57159,

Oct. 2018.

 [21] T. Shao et al., “A compact dual-band negative group

delay microwave circuit,” Radioengineering,

vol. 27, no. 4, pp. 1070–1076, Dec. 2018.

 [22] B. Ravelo, A. Pérennec, and M. Le Roy, “Synthesis of

frequency-independent phase shifters using negative

group delay active circuit,” Int. J. RF Microw.

Comput.-Aided Eng., vol. 21, no. 1, pp. 17–24,

Jan. 2011.

 [23] L. He et al., “A 24-GHz source-degenerated tunable

delay shifter with negative group delay compensation,”

IEEE Microw. Wireless Compon. Lett., vol. 28, no. 8,

pp. 687–689, Aug. 2018.

 [24] M. Kandic and G. E. Bridges, “Asymptotic limits of

negative group delay in active resonator-based

distributed circuits,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 58, no. 8, pp. 1727–1735, Aug. 2011.

 [25] B. Ravelo, A. Normand, and F. Vurpillot, “Modelling of

interbranch coupled 1: 2 tree microstrip interconnect,”

ACES J., vol. 33, no. 3, Mar. 2018, pp. 285–292.

 [26] B. Ravelo, “Theory on asymmetrical coupled-parallel-

line transmission and reflection zeros,” Int. J. Circuit

Theory Appl., vol. 45, no. 11, pp. 1534–1551,

Nov. 2017.

 [27] C.-T.-M. Wu and T. Itoh, “Maximally flat negative group-

delay circuit: A microwave transversal filter approach,”

IEEE Trans. Microw. Theory Techn., vol. 62, no. 6,

pp. 1330–1342, Jun. 2014.

Fayu Wan is currently a Full Professor with the
Nanjing University of Information Science and
Technology, Nanjing, China. From 2011 to 2013, he
was a Postdoctoral Fellow with the Electromagnetic
Compatibility Laboratory, Missouri University of
Science and Technology, Rolla, MO. His current
research interests include negative group delay
circuits, electrostatic discharge, electro-magnetic

compatibility, and advanced RF measurement.
Wan has a PhD in electronic engineering from the
University of Rouen, Rouen, France (2011).

Ningdong Li is currently pursuing an MS from
the Nanjing University of Information Science and
Technology, Nanjing, China. His research interests
include abnormal wave propagation in dispersive
media and microwave circuits. Li has a BSc in electrical
engineering from Anhui Polytechnic University, Wuhu,
China (2017).

Blaise Ravelo is currently a Professor with
the Nanjing University of Information Science and
Technology, Nanjing, China. He is a pioneer of
the negative group delay (NGD) concept and its
applications. His Google Scholar in 2020 was with an
h-index of 20. He is a (co-)author of more than 250
scientific research papers published in international
conferences and journals.

Wenceslas Rahajandraibe is currently
a Professor with the University of Aix-Marseille,
Marseille, France. He heads the Integrated Circuit
Design Group of the IM2NP Laboratory. His research
is focused on the design of analog and RF IC’s for
telecommunication systems and for smart sensor
ultralow power IC interfaces.

Sébastien Lalléchère is currently an
Associate Professor with Institut Pascal and Universite
Clermont Auvergne, Clermont-Ferrand, France. His
research interests cover the fields of electromagnetic
compatibility including antennas and propagation,
complex and reverberating electromagnetic
environments, electromagnetic coupling, computational
electromagnetics, stochastic modeling, and sensitivity
analysis in electrical engineering. Lalléchère has a PhD
in electronics/electromagnetism from Universite Blaise
Pascal, Clermont-Ferrand (2006).

 Direct questions and comments about this
article to Blaise Ravelo, Electronics and Information
Engineering College, Nanjing University of Information
Science and Technology (NUIST), Nanjing 210044,
China; blaise.ravelo@nist.edu.cn.

892168-2356/20©2020 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2021

Editor’s notes:
This article introduces redundant design approaches for reversible circuits
that have the ability to detect and tolerate single-bit fault without the need
of conventional voting scheme. Experiments preformed show that the pro-
posed scheme reduces the gate cost on average with up to 28% as com-
pared with tri-modular redundant circuits.

—Said Hamdioui, Delft University of Technology

 Fault tolerance is the architectural attribute
of a digital system that maintains proper functioning
of a machine while encountering various kinds of
failures. It facilitates the realization of explicit parts
of a system that involve a higher degree of safety and
critical problems [1]. The use of redundant circuits
in collaboration with majority voter scheme is one
of the effective methods to achieve fault tolerance
in digital system design. The method provides fault-
free output at the cost of large number of gates and
wires. In spite of having several advantages of this
technique, some problems still exist. The worst situa-
tion can arise in majority voting when all the redun-
dant circuits produce faulty output.

Motivated by a variety of applications in several
emerging technologies toward reduction of power
consumption and sizes, reversible circuits (RCs)

Design of Single-Bit
Fault-Tolerant Reversible
Circuits
Hari M. Gaur
ABES-IT Ghaziabad

Ashutosh K. Singh
NIT Kurukshetra

Anand Mohan
IIT (BHU) Varanasi

have received significant
attention since a decade.
RCs have direct relation
with quantum computa-
tion which are largely to
loss of energy levels due
to the phenomenon of
quantum decoherence
that cause single point

failures [2]. In addition to the remarkable work in
the field of testing, development of fault-tolerant
designs are also finding grounds for these circuits
[3]. The evolution commences from error correct-
ing codes generation, majority multiplexing, error
correction for finite field using parity check, major-
ity voter scheme to recent Clifford+T quantum gate
library [4]. Fault-tolerant redundant logic circuits
in-hold lesser design complexity and has the abil-
ity of online repair and diagnose, however, it is not
addressed in the literature for RCs.

Fault detection in parity preserving circuits
Parity preserving (PP) circuits have the capability

to detect the faults occurred due to unusual change
of bits in RCs. A number of testable design methodol-
ogies were presented in the past utilizing this charac-
teristics. Unfortunately, if PP gates or complex PP gate
(CPPG) are used to design a circuit, the statement will
not be true. CPPG, shown in Figure 1a, is built with a
group of fundamental gates and considered as a single

Masahiro Fujita
University of Tokyo

Dhiraj K. Pradhan
University of Bristol

Digital Object Identifier 10.1109/MDAT.2020.3006808
Date of publication: 3 July 2020; date of current version:
8 April 2021.

90 IEEE Design&Test

General Interest

gate (building block) in the circuit formation [5].

Parity preserved architectures ensures the detection

of single-bit flip faults for such design methodology

which produces PP circuits by the use of fundamental

gates as presented in Figure 1b for example [6]–[8].

The scheme is based on the method of multiple con-

trolled Toffoli (MCT) gates placement either during

design methodology or modification technique and

provides full coverage of single-bit faults [9], [10]. PP

circuits, however, provide only fault detection. How-

ever, they can also be used to design fault-tolerant cir-

cuit by further modifications.

Contribution
This article introduces a generalized architecture

for designing fault-tolerant RCs that can be scalable up

to N modular redundant circuits using parity preserva-

tion and generation technique. The designed circuit

using this model can detect and tolerate single point

failures by means of bit fault. The presented model

also have ability to deal with the occurrence of worst

situation with redundant logic when all adjacent cir-

cuits produce faulty output and have fault diagnosis

and repair provisions. Nevertheless, efficient method-

ologies for designing testable RCs have been adopted

which were found superior in terms of gates, quantum

cost (QC), garbage output (GO), ancilla input (AI),

and fault coverage [9], [10].

Proposed fault-tolerant model
The insight of the scheme is the development

of PP circuits followed by the inclusion of a parity

checker to form testable circuits (TCs). These cir-

cuits generate an error signal at the output during

any single-bit faulty operations. This signal is utilized

to design redundant circuits for fault tolerance.

Error signal generation
In an n wire PP RC shown in Figure 2a with inputs

(I1, I2, … , In) and outputs (O1, O2, … ,On), parity
checking can be achieved by cascading controlled
NOT (CNOT) gates from each wire to a new wire
before and after the complete circuit. Considering
tin as a new test wire on which the parity checking
has to be done for the formation of a TC, as shown in
Figure 2b. The corresponding output of this wire is
called as error signal (er) in this article and is given by

 er = (I ⊕ O) ⊕ tin (1)

where I = (I1 ⊕ I2 ⊕ … ⊕ In) and O = (O1 ⊕O2
⊕ … ⊕On). As RC is PP circuit, I ⊕ O = 0. This means
that, for nonerroneous functionality of RC, er = tin.

The MCT gates placement methodology is uti-
lized for the realization of RC and are converted into
respected testable cells (TCs) for the generation of
error signal (er) [9], [10]. Considering a single-bit flip
fault occurred at any level of the circuit. Each set (con-
taining two MCT gates) in TC design scheme is PP
and the same parity information will be transferred
to next level. Hence, the values at the output will be
inverted in odd numbers. Considering O1 → O1, er
will be inverted for faulty operations as calculated in

Figure 1. PP architectures: (a) CPPG circuit and (b) fundamental gates-
based circuit.

Figure 2. Conversion of RC into TC:
(a) CPPG circuit and (b) fundamental
gates-based circuit.

91March/April 2021

er = [(I1 ⊕ I2 ⊕ … ⊕ In) ⊕ (O1 ⊕ O2 ⊕ … ⊕ On)] ⊕ tin
= [O1 ⊕ O1] ⊕ tin = 1 ⊕ tin = tin. (2)

Hence, the logic behind the generation of error signal
can be summarized as er = tin/tin, for nonfaulty/faulty
operations of TC which is used to detect the occur-
rence of these faults in the circuit.

Fault tolerance
Depending on the required degree of accuracy of

a circuit, multiple redundant TCs can be connected
in parallel. The array of these TCs are cascaded with
an and–or network to form a fault-tolerant circuit.
Considering the following characteristics in a multi-
ple-input–single-output (MISO) TC for the designing
fault-tolerant model:

· n input (I1, I2, … , In) including AIs and one test
input Tin;

· one required output O and rest (n – 1) output
are garbage;

· assigning Tin = 0 which implies er = 0 for non-
faulty and er = 1 for faulty operations.

Considering N number of TCs which are con-
nected in parallel to produce N redundant outputs
(O1, O2, … ,ON). The corresponding error signal pro-
duced by TCs are (er1, er2, … ,erN). GOs and constant
input of all the building blocks are ignored. Each TC
is cascaded with respective reversible and gates (and1,
and2, … , andN). The outputs of these and gates are
used as input to a reversible or gate which produces
fault free output O, as depicted in Figure 3. The inputs
to the and gates are the output of respective TCs, com-
plement of respective error signal (Ont1, Ont2, … ,OntN),
error signals of N th TC and of all previous TCs. For
instance, and1 has three inputs (C, O1, Ont1), and2 has
four inputs (C, O2, er1, Ont2) and andN has (N + 2) inputs
(C, ON, er1, er2, … , erN−1, OntN). Here, C is a con-
stant input for producing logical and operation
using MCT gates. Hence, and1 is of size (3 × 3),
and2 is of size (4 × 4) and andN is of size {(N + 2) ×
(N + 2)}. All the error signal output are also taken as
the inputs to another and gate. The output of this gate is
given by Tout = er1 · er2 · …· erN after ignoring AI and GO.

The important aspect behind the designing is
to probe the final output of fault-tolerant MISO TC
circuit to be nonfaulty for the true functioning of
at least any one of the TCs. The final output O of
proposed MISO TC circuit is given by the following
equation:

O = OA1 + OA2 + … + OAN

= O1 · Ont1 + O2 · er1 · Ont2 + … + ON

·er1 · er2 · … · erN–1 · OntN

= O1 · er1 + O2 · er1 · er2 + … + ON

·er1 · er2 · … · erN–1 · erN. (3)

The error signal outputs will be er1 = 0 and er2 =
er3 = … = erN = 1 for Tin = 0, when all the TCs pro-

duce faulty output except TC1. The final output can

be calculated as O = O1 using (3), which is fault free

output of TC1. Based on the functioning of MISO TC

and utilizing (3), the functional and fault patterns for

Trimodular redundant fault-tolerant circuit contain-

ing three inputs (I1, I2, I3) and one output TC (O)

can be shown in Table 1. Here, (er1, er2, er3) are the

three error signal outputs, which indicates the faulty/

nonfaulty behavior of respective TCs for Tin = 0.

Hence, the error signal output will be at logic 0

when any one of the TCs is performing correct oper-

ation. The test output Tout = er1 · er2 · … · erN = 0. For

the worst case when all the TCs are performing erro-

neous operations, er1 = er2 = … = erN = 1 which flips

Tout to 1. Hence Tout will be 1 only when all TCs are

in erroneous operations, else be 0. The provision for

the inclusion of a register file can also be included

on the wires of all the error signals to store the fault

patterns of all the TCs. These patterns can be utilized

for fault diagnosis and repair purposes.

Figure 3. Fault-tolerant MISO TC model.

92 IEEE Design&Test

General Interest

Fault-tolerant model for MIMO TC
The work is extended for the circuits which pro-

duces more than one output at a time. The number
of outputs in a single TC will increases the design
complexities as the number of NOT and will be equal
to the multiple of number of redundant circuit and
number of output of the TC. It will increase the gate
cost as well as the QC which are the key metrics of
any RC designs. Considering the following charac-
teristics for the designing of multiple input multiple
output (MIMO) TC:

· n input (I1, I2, … , In) including AIs and one test
input Tin;

· m required output (O1, O2, … , Om) and rest (n – m)
 output are garbage;

· assigning Tin = 0, this implies, er = 0 for nonfaulty
and er = 1 for faulty operations.

Considering N number of TCs are taken in
parallel, which produce N redundant m output vec-
tors [(O11, O12, … ,O1m), (O21, O22, … , O2m), … , (ON1,
ON2, … , ONm)]. The corresponding error signal of TCs
are (er1, er2, … , erN). GOs and constant input of all
the building blocks are ignored. All the outputs of
each TC is cascaded with corresponding reversible
and gates [(and11, and12, … , and1m), (and21, and22, … ,
and2m), … , (andN1, andN2, … , andNm)]. The outputs of
these and gates are used as input to corresponding
reversible or gates (or1, or2, … , orm) which produces
fault free output (O1, O2, … , Om), as depicted in
Figure 4. All the connections are similar to MISO TC,
except (m × N) and gate arrays are used in place of
single and gate and m or gates for the TCs. The inputs
to the and gates arrays are the outputs of respective
TCs, complement of corresponding error signals
(Ont1, Ont2, … , OntN) and error signals of all previous
TCs. The Oth

ANm output (output of and gates) from
each and gate array are fed as input to Oth

m or gate.
The m th output of the circuit can be calculated using

Om =OA1m + OA2m + … + OANm

=O1m · Ont1 + O2m · er1 · Ont2
 + … + ONm · er1 · er2 · … · erN−1 · OntN

=O1m · er1 + O2m · er1 · er2
 + … + ONm · er1 · er2 · … · erN−1 · erN . (4)

For the nonerroneous functioning of any of the TC,
the final output Om of fault-tolerant MIMO TC circuit
is nonfaulty. All the error signal outputs are also taken
as inputs to another and gate for the detection of worst
case situation and a register file can also be added to
store the fault patterns of N th TC. The functional and
fault patterns for trimodular redundancy (TMR)−based
fault-tolerant circuit for three inputs (I1, I2, I3) and three
outputs (O1, O2, O3) TC is also shown in Table 2 when
Tin = 0.

Table 1. Functional/fault pattern table of fault-tolerant MISO TC.

Figure 4. Fault-tolerant MIMO TC model.

93March/April 2021

Features of proposed model
Based on the above explanations, the concluding

features of fault-tolerant MISO and MIMO TC circuit
models are listed as follows.

· The output(s) is nonfaulty, for true performance
of at least any one of the TCs.

· The operational preference of TCN−1 is higher
than TCN during operations.

· The worst case, when all the TCs are performing
faulty operations, can be detected.

· Fault detection in and–or network can be done
by using PP structures of and or gates, then con-
structing separate TC for each array, as shown in
Figure 5 [7], [9].

· Fault diagnosis of respective TC can also be
achieved by examining the faulty patterns from
register file.

Performance assessment
The performance of the proposed methodology

is analyzed by its realization on a number of RCs
and obtaining the effective cost measures. A com-
parison is also provided with the results of a best fit
prior methodology on the same platform. Arbitrary
RCs are converted into corresponding fault-tolerant
version utilizing the three essential steps of the pro-
posed methodology.

· Design preserving circuit (RC) using fundamen-
tal Toffoli and Fredkin gates.

· Modify RC to form corresponding TC which pro-
duce an error signal during a single-bit faulty
operation. MCT gates placement and cascading
[9], [10] method is considered for the devel-
opment of TCs in the present case. The cir-
cuits are synthesized by creating a set of rules
accordingly using transformation-based synthesis
algorithm [11].

· Develop fault-tolerant circuits using redundant cir-
cuits in accordance with proposed conventions.

Final cost measures are calculated by creating
Toffoli Fredkin cascade files and implementing on
RC-viewer tool [12]. There are several proven meth-
odologies are provided for the development of TCs in
the literature. In spite of the comparing the work with
that fault-tolerant methodologies for the direct com-
parison, the most efficient TC design method in terms
of cost metrics is considered for comparison [13].

Cost measures
Number of wires (n), gate count (GC), QC,

GO, and AI are the major parameters which
are considered in this correspondence. Gen-
eral equations to calculate these measures in
accordance with the proposed model are given by

Table 2. Functional/fault pattern table of fault-tolerant MIMO TC.

Figure 5. Fault detection in and–or network.

94 IEEE Design&Test

General Interest

 nN = NnTC + m(2N – 1) + 1 (5)
GCN = NGCTC + (N – 1)nTC

 + (2N – 1)m + N + 1 (6)
GON = nN – m – 1 (7)

 AIN = nN – nv . (8)

where N is the number of redundant circuits are used,
m is the number of required outputs of TC, and nv
is the number of input variables, i.e., (nTC – AITC).
Equation for QC is not provided as it does not follow
linear relation when similar circuits are cascaded,
the results may differ on different tools available for
its calculation.

Brief review on TC designing
Numerous methodologies have been proposed

which utilize the concept of parity preservation and

generation for the detection of faults in RCs. The

construction of TCs has been achieved using novel

gates, original circuit modification and designing

with built-in testability features [3]. TC using R1/R2,

CTSG using online testable gate (OTG), dual rail I/O

testable gates and modification using testable revers-

ible circuit (TRC) produces two complementary

error signal outputs, respectively [14]–[17], which

increase design complexities as well as operating

costs. The method which utilizes the concept of

modification of RC into modified testable cell (MTC)

is only meant for PP gates [7]. Apart from our prior

proposed methods [9], [10], extended Toffoli gates

(ETGs)-based modification requires only double

gates as presented in the original circuit to form cor-

responding TCs with single error signal output [13].

Table 3. Implementation results and comparison.

95March/April 2021

Results and comparison
A set of benchmark circuits are taken for the

experimentation of proposed method from one of
the most reliable web pages for RCs [12]. RCs are
designed and transformed into respective TCs, which
are used to design respective fault-tolerant circuit
for double modular redundancy (DMR) and TMR.
Note that the MIMO model is applied for designing
fault-tolerant circuits. For instance, the number of
input variables (nv) in rd32 circuit is 3 and the num-
ber of required outputs (m) are 2.

After analyzing the prior work on TC designing,
ETG-based method to design PP circuits is preferred
and corresponding TCs for comparison. The imple-
mentation results are listed in Table 3, where num-
ber of wires, AIs, and GOs are not listed since they
are same in both of the methodologies. These results
are obtained without considering fault detection cir-
cuit for and–or network, and gates are implemented
using MCT gates and or gates are implemented using
Fredkin gates (3 × 3 MCF gates for simplicity). The
sum of all the values listed in each column is cal-
culated and taken for the evaluation of the change
in cost metrics in respective cases of TC, DMR, and
TMR. Due to the fact that, there are two CNOT gates
are used per gate for achieving testability in [13]
whose total QC is 2. However in the present method,
MCT gates are used which slightly increases the QC
by 23%, 19%, and 18% in case of TC, DMR, and TMR
circuits, respectively. But, an excellent reduction
in gate cost by 28%, 23%, and 22% in respective TC,
DMR, and TMR fault-tolerant circuits has been ana-
lyzed due to the use of two gates in [13] for testabil-
ity and the proposed work utilizes only one gate for
the construction of TCs.

Parity Preservation and generation is one of the
techniques of achieving testability in RCs as these
circuits performs fully controllable and observable
operations. Utilizing this technique, TCs are realized
which facilitate nonfaulty/faulty information during
circuit operation. These TCs are used to design a
generalized architecture fault-tolerant RCs with the
use of redundant logic. The operation of redundant
circuits is governed by and–or network that has the
capability to deal with the worst situation when all
the circuits turned faulty. The model guarantees full
coverage of single-bit faults and provides real-time
operational behavior TCs. A number of circuits are
realized using the proposed methodology where

an excellent reduction is observed in the GC when

compared to prior TC development methodologies.

The reduction in test overheads by exploring new

PP circuit design methodologies will be the primary

objective for future extension of the work.

 References
 [1] A. Avizienis, “Fault-tolerance: The survival attribute

of digital systems,” Proc. IEEE, vol. 66, no. 10,

pp. 1109–1125, Oct. 1978.

 [2] M. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information. Cambridge, U.K.:

Cambridge Univ. Press, 2000.

 [3] H. M. Gaur, A. K. Singh, and U. Ghanekar, “A

comprehensive and comparative study on online

testability for reversible logic,” Pertanika J. Sci.

Technol., vol. 24, no. 2, pp. 245–271, 2016.

 [4] M. Amy et al., “A meet-in-the-middle algorithm for fast

synthesis of depth-optimal quantum circuits,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 32, no. 6, pp. 818–830, Jun. 2013.

 [5] H. M. Gaur et al., “Computational analysis and

comparison of reversible gates for design and test

of logic circuits,” Int. J. Electron., vol. 106, no. 11,

pp. 1679–1693, 2019.

 [6] H. M. Gaur, A. K. Singh, and U. Ghanekar, “Design of

reversible arithmetic logic unit with built-in testability,”

IEEE Design Test, vol. 36, no. 5, pp. 54–61, Oct. 2019.

 [7] H. M. Gaur, A. K. Singh, and U. Ghanekar, “Testable

design of reversible circuits using parity preserving

gates,” IEEE Design Test, vol. 35, no. 4, pp. 56–64,

Aug. 2018.

 [8] A. K. Singh, H. M. Gaur, and U. Ghanekar, “Fault

detection in multiple controlled Fredkin circuits,” IET

Circuits, Devices Syst., vol. 13, no. 5, pp. 723–729,

2019.

 [9] H. M. Gaur and A. K. Singh, “Design of reversible

circuits with high testability,” IET Electron. Lett., vol. 52,

no. 13, pp. 1102–1104, 2016.

 [10] H. M. Gaur, A. K. Singh, and U. Ghanekar, “A new DFT

methodology for k-CNOT reversible circuits and its

implementation using quantum-dot cellular automata,”

Int. J. Light Electron Opt., vol. 127, no. 22,

pp. 10593–10601, 2016.

 [11] D. M. Miller, D. Maslov, and G. W. Dueck, “A

transformation based algorithm for reversible logic

synthesis,” in Proc. Design Autom. Conf., Jun. 2003,

pp. 318–323.

96 IEEE Design&Test

General Interest

 [12] D. Maslov, G. Dueck, and N. Scott. (2004). Reversible

Logic Benchmark Page. Accessed: Aug. 2018.

[Online]. Available: http://www.cs.uvic.ca/?dmaslov/

 [13] N. M. Nayeem and J. E. Rice, “Online testable

approaches in reversible logic,” J. Electron. Test.,

vol. 29, no. 6, pp. 763–778, 2013.

 [14] D. P. Vasudevan et al., “Reversible-logic design with

online testability,” IEEE Trans. Instrum. Meas., vol. 55,

no. 2, pp. 406–414, Apr. 2006.

 [15] N. Farazmand, M. Zamani, and M. B. Tahoori, “Online

fault testing of reversible logic using dual rail coding,”

in Proc. 16th IEEE Int. Symp On-Line Test. (IOLTS),

Jul. 2010, pp. 204–205.

 [16] H. Thapliyal and A. P. Vinod, “Designing efficient online

testable reversible adders with new reversible gate,” in

Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2007,

pp. 1085–1088.

 [17] S. K. N. Mahammad and K. Veezhinathan,

“Constructing online testable circuits using reversible

logic,” IEEE Trans. Instrum. Meas., vol. 59, no. 1,

pp. 101–109, Jan. 2010.

Hari M. Gaur is currently working as an Associate
Professor with the Department of ECE, ABES Institute
of Technology, Ghaziabad, India. His research
interests include reversible logic, online and offline
testing, and fault-tolerant digital design. Gaur has a
PhD from NIT Kurukshetra, Kurukshetra, India.

Ashutosh K. Singh is working as a Professor
and the Head of the Department of Computer
Applications, NIT Kurukshetra, Kurukshetra, India.
He is also a Charted Engineer from U.K. His research
interests include verification, synthesis, design,
and testing of digital circuits, data science, cloud

computing, machine learning, security, and big
data. Singh has a PhD in electronics engineering
from Indian Institute of Technology (BHU) Varanasi,
Varanasi, India, and a Post Doc from the Department
of Computer Science, University of Bristol, U.K.

Anand Mohan is currently working as an Institute
Professor at Indian Institute of Technology (BHU)
Varanasi, Varanasi, India. His current areas of
research interest are intelligent instrumentation, fault-
tolerant design, robust watermarking algorithms, and
information security.

Masahiro Fujita is currently working as a Professor
at VLSI Design and Education Center, University of
Tokyo, Tokyo, Japan. He has done innovative work in
the areas of hardware verification, synthesis, testing,
and software verification mostly targeting embedded
software and web-based programs. Fujita has a PhD
in information engineering from the University of Tokyo
(1985).

Dhiraj K. Pradhan is currently the Chair of
Computer Science at the University of Bristol, Bristol,
U.K. More recently serving as the Founding CEO of
Reliable Computer Technology, Inc. He is a Fellow
of both ACM and the Japan Society of Promotion of
Science and also a Fellow of IEEE.

 Direct questions and comments about this
article to Hari M. Gaur, Department of Electronics
and Communication Engineering, ABES Institute of
Technology Ghaziabad, Ghaziabad 201009, India;
leoharimohan84@gmail.com.

http://www.cs.uvic.ca/?dmaslov/

972168-2356/21©2021 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC

 The firsT ACM/IEEE Workshop on Machine
Learning for CAD (MLCAD) was held on Septem-
ber 2–4, 2020 in Canmore, AB, Canada. The location
at the entrance to Banff National Park maintained
a long tradition of mountain locations for techni-
cal meetings (Figure 1). The workshop welcomed
52 participants including eight graduate students.
The program committee was cochaired by Hussam
Amrouch of Karlsruhe Institute of Technology and
Bei Yu of Chinese University of Hong Kong. Gen-
eral Chairs were Marilyn Wolf and Jörg Henkel. The
program included 30 contributed presentations
based on submissions to the program committee
as well as five invited talks. The program included
talks from both industry and academia; partici-
pants were based in Asia, Europe, and North Amer-
ica. The program provided time for in-depth dis-
cussion; topics included appropriate types of ML
methods for various types of CAD problems and
challenges associated with training data.

The second edition of MLCAD turned out to
be quite different. Originally scheduled to be held
physically in September in Iceland, it became
apparent in the spring of 2020 that this option was
not realistic any more. Initially, it was postponed
by two months to November, hoping that by then
travel options would be available again. In May, it
was decided that an online version was the only

realistic option (Figure 2). At that time, ICCAD
was still planning on a physical conference, so a
“Highlights of MLCAD” physical meeting as an
ICCAD Thursday workshop was planned, to enable
physical meeting which the EC considered to be
important for interaction among MLCAD research-
ers. The very helpful support of ICCAD is gratefully
acknowledged. However, ICCAD went virtual as
well, so that plan was dropped.

Various options were considered for con-
ducting MLCAD virtually. The usual well-known
problems had to be dealt with. Discussions with

Report on First and Second ACM/IEEE
Workshop on Machine Learning for CAD
(MLCAD)
Marilyn Wolf
University of Nebraska, Lincoln, NE 68588 USA

Jörg Henkel
Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany

Conference ReportConference Report

Digital Object Identifier 10.1109/MDAT.2021.3066137
Date of current version: 8 April 2021.

March/April 2021

Raviv Gal
IBM Haifa, Haifa, Israel

Ulf Schlichtmann
Technical University of Munich, 80333 Munich,
Germany

Figure 1. Impressions from the First ACM/IEEE MLCAD
Workshop in Banff.

98 IEEE Design&Test

Conference Report

participants in earlier virtual conferences helped
us guide our decisions, as did an ACM Best Prac-
tices report on virtual conferences and a virtual
meeting of all SIGDA-sponsored conferences. In the
end, we decided to extend MLCAD into an entire
week (Nov. 16–20, 2020), with roughly 3 hours of
the live program every day. Talks for contributed
articles were prerecorded. The ACM Digital Library
turned out to be an excellent choice for hosting
not only MLCAD articles, but also the prerecorded
videos. The live program each day was weighted
toward invited keynote and plenary talks, as well as
a panel on the final day. Seventy-five minutes were
dedicated to contributed articles each day. Authors
would present live highlights of their research for
5 minutes, followed directly by discussion. Zoom
was used for the live presentations. Discussion
was a mixture of chat-based question (using both
Zoom chat as well as a dedicated MLCAD forum
we set up in Slack) and questions directly asked
orally. Four days of the MLCAD week were focused
on Pacific Time, as most invited speakers came
from this region, and contributed articles were also
dominated by U.S. 7–10 A.M. PST worked well for
the U.S. and Europe, but Asia participation suffered.

We specifically did conduct one day on a different
schedule (morning in Asia, afternoon/evening in
the U.S.). It turned out that this arrangement was
not as successful. It effectively shut out Europe
(midnight—3 A.M.), and being early afternoon in
Pacific time zone, may have interfered with regular
meetings which attendees were involved with in
their companies or universities. Attendance on this
day turned out to be lower compared to other days
by about one-third. Overall, discussions were quite
lively, and a lot of positive feedback was received
both on the contents of the workshop as well as
the logistical arrangements.

The workshop featured four keynote and four
plenary presentations, mostly from a broad range of
industrial companies (Cadence, Huawei, Infineon,
Nvidia, Qualcomm, Synopsys, and Xilinx). The open-
ing keynote by Andrew Kahng of UCSD explored the
relation of learning, optimization, and scaling in the
context of MLCAD. It attracted a lot of discussion. On
the final day, a panel with mixed industry and aca-
demic representation pondered the state and future
of MLCAD.

A total of 26 contributed articles was featured
in the program. The accepted articles underwent

Figure 2. The Second ACM/IEEE MLCAD Workshop, virtual.

99March/April 2021

 Direct questions and comments about this article
to Jörg Henkel, Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany; henkel@kit.edu.

a rigorous review by an expert Technical Program
Committee of 32 researchers, requiring at least three
reviews per article. The contributed articles were
dominated by North America and Europe, with 16
and 8 articles, respectively. Article submissions dou-
bled compared to the 2019 edition of the workshop.

Registration more than doubled as well, to a
total of 141 registered participants. Most sessions
were attended by 70–90 attendees at any time. The
available expertise resulted in substantial and lively
discussions. Attendee demographics were similar to
contributed articles—dominated by the U.S. partic-
ipation, but a very strong showing from Europe as
well, especially from Germany.

MLCAD’2020 also featured a “virtual social event”
every day. Jian-Jia Chen (Technical University of
Dortmund) set up some environments in the gather.
town system. These allowed participants to interact
in a manner somewhat resembling a physical social
event. Participants explored this option and it did
result in some nice conversations, but such a virtual

social event cannot yet match the level of interac-
tion which we expect from physical social events.
Certainly, this is also impacted simply by the fact that
many participants in a virtual workshop will have
their next regular meetings scheduled right after the
workshop, whereas in a physical setting, they are
actually away from their offices for some days.

The proceedings of MLCAD’2020 are availa-
ble in both ACM Digital Library and IEEExplore.
Recordings of most invited talks have been made
available in a YouTube channel as shown in the
figure (see the workshop website at mlcad.itec.kit.
edu for details).

100 2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Conference Report

Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC

Recap of the 39th Edition of the
International Conference on Computer-
Aided Design (ICCAD 2020)

 The InTernaTIonal ConferenCe on Com-
puter-Aided Design (ICCAD) is jointly sponsored by
IEEE and ACM, and it is the premier forum to explore
emerging technology challenges in electronic design
automation, present leading-edge R&D solutions,
and identify future roadmaps for design automation
research areas.

The majority of the past 38 editions of the ICCAD
were hosted in California, either in the bay area or
in southern California such as San Diego or Irvine.
Recently, the executive committee also tried to
explore other locations such as Austin or Denver.
Unfortunately, 2020’s edition is a special one: owing
to the global COVID-19 pandemic, many conferences
were forced to make the event work in the online
world. Without exception, the ICCAD 2020 Execu-
tive Committee also decided to move forward with a
virtual conference due to the continued uncertainty
surrounding the COVID-19 situation.

Nevertheless, we were very excited to test out
this new online edition for the first time in ICCAD’s
39-year history. Even though the virtual events lack
the kind of interpersonal communications attendees
get from in-person events, with industry sponsorship
and much lower expense due to the virtual platform,
we may offer a much lower registration fee to the
attendees, and with no travel overheads, it can boost
the number of participants. Furthermore, a carefully
tuned schedule with a virtual platform can make it a

true “global” event for anyone around the world to
attend ICCAD.

The members of the executive committee, the
technical program committee, and numerous vol-
unteers have spent several months preparing an
exciting program. Despite the global pandemic, we
have a record-high in terms of the number of regular
article submissions, with 471 regular articles submit-
ted for review by our technical program committee,
an almost 20% increase compared to last year’s 394
submissions. Submissions in hardware security and
neural networks were particularly popular; however,
traditional EDA topics such as system design, physi-
cal design, verification/validation, and logic synthesis
were also well represented. The submissions were
divided into 17 tracks and reviewed by 144 outstand-
ing technical program committee members from
both industry and academia worldwide. For the first
time, the TPC meeting was held online without com-
promising the quality of the double-blind review pro-
cess. Finally, the program committee has selected 127
articles spreading over 35 sessions on diverse topics.
We also had a record number of special session pro-
posals submitted to ICCAD this year. Altogether, we
had 11 special sessions and two embedded tutorials
on topics that complement the regular sessions.

The committee carefully planned ICCAD’s first-
ever virtual conference. With generous industry
sponsorship from Alibaba, Cadence, Synopsys, and
SMARCO, we were able to offer more than a 10×
reduction in registration rate compared to previous
ICCAD conferences (for example, $50 for regular

Digital Object Identifier 10.1109/MDAT.2021.3051483

Date of current version: 8 April 2021.

Yuan Xie
University of California at Santa Barbara (UCSB)

Conference ReportConference Report

101March/April 2021

rate and $25 for student rate). Presenters also have
prerecorded video uploaded before the conference,
so that the live presentation can be much shorter,
enabling a modified conference schedule to accom-
modate various time zones as much as possible. All
these efforts helped a huge boost of the registered
attendees—compared to the previous year’s ~400
attendees, and we ended up with approximately 900
attendees for the first-ever virtual ICCAD—more than
double with respect to any previous ICCAD.

Two best article awards were presented at the
opening ceremony. In the “front-end” category, Sujit
Kumar Muduli, Gourav Takhar, and Pramod Sub-
ramanayan were recognized for their article titled
“HyperFuzzing for SoC Security Validation.” The
“backend” best article award went to Adam Issa,
Valeriy Sukharev, and Farid N. Najm for work pre-
sented in their article “Electromigration Checking
Using a Stochastic Effective Current Model.”

We were delighted to host several distinguished
keynote speakers: the Monday morning keynote on AI
for enterprises was delivered by IBM Fellow Dr. Ruchir
Puri. On Tuesday, Professor Birgit Vogel-Heuser from
the Technical University of Munich presented the
IEEE CEDA Luncheon Distinguished Lecture on
Cyber Physical Systems. Finally, Professor Yao-Wen
Chang from National Taiwan University presented
the Wednesday keynote on EDA for More-Moore and
More-than-Moore Designs.

On Thursday, we have five interesting workshops
planned, on a variety of both new and established top-
ics. Some of these workshops are long-time staples of
ICCAD, while others test the waters for the first time.
Additionally, a workshop addressing system-level inter-
connect problems is further colocated with ICCAD.

Once again, ICCAD promises to be an ultimate desti-
nation for those working on cutting-edge EDA research.
I would like to thank the organizing committee and
program committee members, the authors and speak-
ers, as well as attendees from all around the world, to
make this first-ever virtual ICCAD event a great and
memorable one. Finally, we are grateful to our ICCAD
2020 sponsors and numerous supporters for making
this year’s conference another successful event.

hopefully, The pandemIC will be over in 2021,
and based on that assumption, the next ICCAD will
be the first-ever edition to be held outside of U.S., tak-
ing place in Munich, Germany, from November 1 to
4, 2021. The executive committee is excited to locate
ICCAD for the first time in Europe. See http://www.
iccad.com/ for more details. Once again, ICCAD
promises to be an ultimate destination for those
working on cutting-edge EDA research. We hope to
see you in Munich in November!

 Direct questions and comments about this article
to Yuan Xie, ECE Department, University of California
at Santa Barbara (UCSB), Santa Barbara, CA 93106
USA; yuanxie@ucsb.edu.

2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Test Technology TC Newsletter

102

Digital Object Identifier 10.1109/MDAT.2021.3052369

Date of current version: 8 April 2021.

TTTC News
The TTTC website always lists the latest features

and information for its visitors! To find out more,
please visit the website at http://www.ieee-tttc.org/.

PAST TTTC EVENTS
The IEEE International Test Conference
(ITC 2020)
November 3–5, 2020
Washington, DC, USA—Virtual Conference
http://www.itctestweek.org/about-itc/

ITC is the world’s premier venue dedicated to
the electronic test of devices, boards, and systems—
covering the complete cycle from design verifica-
tion, design-for-test, design-for-manufacturing, silicon
debug, manufacturing test, system test, diagnosis, reli-
ability and failure analysis, and back to process and
design improvement. At ITC, design, test, and yield
professionals can confront challenges faced by the
industry and learn how these challenges are being
addressed by the combined efforts of academia,
design tool and equipment suppliers, designers, and
test engineers. ITC, the cornerstone of the test week
event, offers a wide variety of technical activities tar-
geted at test and design theoreticians and practition-
ers, including formal paper sessions, tutorials, panel
sessions, case studies, invited lectures, commercial
exhibits and presentations, and a host of ancillary
professional meetings.

The 24th Design, Automation, and Test in
Europe (DATE) Conference
February 1–5, 2021
Grenoble, France
https://www.date-conference.com/

The 24th DATE conference and exhibition is
the main European event bringing together design-

ers and design automation users, researchers and
 vendors, as well as specialists in the design, test,
and manufacturing of electronic circuits and sys-
tems hardware and software. DATE puts a strong
emphasis on both technology and systems, covering
ICs/ SoCs, reconfigurable hardware and embedded
systems, as well as embedded software. The five-day
event consists of a conference with plenary invited
papers, regular papers, panels, hot-topic sessions,
tutorials, workshops, special focus days, and a track
for executives. The scientific conference is comple-
mented by a commercial exhibition showing the
state of the art in design and test tools, methodol-
ogies, IP and design services, reconfigurable and
other hardware platforms, embedded software, and
(industrial) design experiences from different appli-
cation domains, such as automotive, wireless, tele-
com, and multimedia applications. The organization
of user group meetings, fringe meetings, a univer-
sity booth, a PhD forum, vendor presentations, and
social events offers a wide variety of extra opportu-
nities to meet and exchange information on relevant
issues for the design automation, design, and test
communities. Special space will also be reserved for
EU-funded projects to show their results.

UPCOMING TTTC EVENTS
The IEEE VLSI Test Symposium
April 25–28, 2021—Virtual Live Event
http://tttc-vts.org/public_html/new/2021/

The IEEE VLSI Test Symposium (VTS) explores
emerging trends and novel concepts in testing,
debug, and repair of microelectronic circuits and
systems.

The VTS Program Committee invites original,
unpublished paper submissions for VTS 2021. Pro-
posals for innovative practices and special session
tracks are also invited. Paper submissions should
be complete manuscripts, up to six pages (inclu-
sive of figures, tables, and bibliography) in a stand-
ard IEEE two-column format; papers exceeding the
page limit will be returned without review. Authors

103March/April 2021

BECOME A TTTC MEMBER
For more details and free membership, browse the
TTTC web page: http://tab.computer.org/tttc.

• CONTRIBUTIONS TO THIS NEWSLETTER: Send
contributions to Theocharis (Theo) Theocharides,
Department of Electrical and Computer Engineer-
ing, University of Cyprus, 75 Kallipoleos Avenue,
PO Box 20537, Nicosia 1678, Cyprus; ttheocha-
rides@ucy.ac.cy. For more information, see the
TTTC web page: http://tab.computer.org/tttc.

should clearly explain the significance of the work,
highlight novel features, and describe its current
status. On the title page, please include author
name(s) and affiliation(s), and the mailing address,
phone number, and e-mail address of the contact
author. A 50-word abstract and five keywords iden-
tifying the topic area are also required.

The 2021 edition of VTS will be an online vir-
tual interactive live event. The program includes
keynotes, scientific paper presentations, short
industrial application paper presentations, special
sessions, and innovative practices sessions.

The 25th IEEE European Test Symposium
(ETS’20)
May 24–28, 2021
Belgium—Virtual Live Event
http://ets2021.eu/

The IEEE European Test Symposium (ETS) is
Europe’s premier forum dedicated to presenting and
discussing scientific results, emerging ideas, applica-
tions, hot topics, and new trends in the area of elec-
tronic-based circuits and system testing, reliability,
security, and validation.

In 2021, ETS will be organized virtually online.
The symposium is organized by KU Leuven and
IMEC that cosponsor the event jointly with the
IEEE Council on Electronic Design Automation
(CEDA).

The program includes excellent keynotes, sci-
entific papers, and highlights from the industry. In
addition to regular paper submissions, ETS offers

a track for informal contributions dedicated to
early hot ideas and relevant case studies as well
as a PhD forum. A Test Spring School and Fringe
Workshops will be organized in conjunction
with ETS’21.

NEWSLETTER EDITOR’S INVITATION
I would appreciate input and suggestions about

the newsletter from the test community. Please for-
ward your ideas, contributions, and information on
awards, conferences, and workshops to Theocharis
(Theo) Theocharides, Department of Electrical
and Computer Engineering, University of Cyprus,
75 Kallipoleos Avenue, PO Box 20537, Nicosia 1678,
Cyprus; ttheocharides@ucy.ac.cy.

Theo Theocharides
Editor, TTTC Newsletter

104 2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

The Last Byte

 the very theme of this special issue of
Design&Test, open-source EDA, resonates with me.

Thirty years ago or so, many large vertically
integrated electronics companies had internal EDA
departments. They created a lot of innovative tools
and algorithms that designers use even today, driven
by the advanced ICs used in their products. I worked
in this environment.

Although the EDA tools these divisions created
were proprietary, they were the open source for
those inside the company with a need to know. As
mentioned in the Guest Editors’ Introduction, being
able to build on an already created infrastructure
speeds the development of new techniques. I built
a Fault simulator that used C models instead of just
gates from an excellent and well-documented logic
simulator someone else had done, and a colleague
added a new Fault model to our test generator.

But I also learned some of the pitfalls of this envi-
ronment. These should be considered for a success-
ful open-source EDA infrastructure.

Open-source EDA has two uses. One, as men-
tioned above, is as a base for researching new algo-
rithms. The second, also mentioned in the Guest
Editors’ Introduction and the articles in this issue, is
as a design environment for academic research in
design and EDA.

A tool that is part of a design environment must
be stable and must be powerful enough to handle
the designs it will see. Both can be difficult. Those
who fund research want to see innovation. Will they
pay for maintenance? Also, doing maintenance does
not fit in well with academia. Students do not stay all
that long, and tool maintenance is not a good thesis
topic, though it might make one quite employable.

Then there is the problem of making the tool
capable of handling real designs. The DFT tool Fault,
described in one of the articles in this issue, is an
excellent start but not powerful enough to handle
anything but benchmarks. It takes a long time to get a
tool ready for industrial-strength designs. Do funding
agencies (and students) have the patience for this?

Another issue is how to incorporate innovations
into a stable toolset. While the design database men-
tioned in the Introduction should help, tools often
interact in unexpected ways. A suite of EDA tools
must be managed, whether open source or proprie-
tary. The product manager who approves or denies
requests for changes may be annoying to developers
and even some customers, but without them chaos
can ensue. Coordinating tools in a suite developed
in many different universities on unsynchronized
schedules will be challenging.

None of these issues make open-source EDA
a bad idea, but I’d recommend that research con-
centrate on the hard problems, not problems that
commercial tool vendors have already solved. This
means that developers of open-source EDA need to
understand the capabilities of commercial EDA. Be
as familiar with EDA vendor websites as you are with
IEEE Transactions on CAD. Ask vendors for copies
of manuals. Visit exhibitors at DAC and ITC, either
virtual or physical.

And EDA vendors, visit universities and tell them
what your dream list is: capabilities you want to
include but have no idea of how to implement.

And best wishes to those working on open-source
EDA. If I were back in grad school, that’s where
I’d be.

 Direct questions and comments about this article
to Scott Davidson; davidson.scott687@gmail.com;
Twitter: @scottd687.

The Road to Open-Source EDA
Scott Davidson

Digital Object Identifier 10.1109/MDAT.2021.3053219
Date of current version: 8 April 2021.

